Regularity and continuity of higher order maximal commutators

被引:0
|
作者
Liu, Feng [1 ]
Ma, Yuan [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Higher order maximal commutator; Boundedness and continuity; Sobolev space; Triebel-Lizorkin space; Besov space; CAMPANATO SPACE; OPERATOR; BOUNDEDNESS; COMPACTNESS; TRANSFORM; INTEGRALS;
D O I
10.1007/s13324-024-00952-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let k >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 1$$\end{document}, 0 <=alpha<d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le \alpha <d$$\end{document} and Mb,alpha k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {M}_{b,\alpha }<^>k$$\end{document} be the k-th order fractional maximal commutator. When alpha=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =0$$\end{document}, we denote Mb,alpha k=Mbk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {M}_{b,\alpha }<^>k=\mathfrak {M}_{b}<^>k$$\end{document}. We show that Mb,alpha k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {M}_{b,\alpha }<^>k$$\end{document} is bounded from the first order Sobolev space W1,p1(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W<^>{1,p_1}(\mathbb {R}<^>d)$$\end{document} to W1,p(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W<^>{1,p}(\mathbb {R}<^>d)$$\end{document} where 1<p1,p2,p<infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p_1,p_2,p<\infty $$\end{document}, 1/p=1/p1+k/p2-alpha/d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/p=1/p_1+k/p_2-\alpha /d$$\end{document}. We also prove that if 0<s<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s<1$$\end{document}, 1<p1,p2,p,q<infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p_1,p_2,p,q<\infty $$\end{document} and 1/p=1/p1+k/p2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/p=1/p_1+k/p_2$$\end{document}, then Mbk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {M}_b<^>k$$\end{document} is bounded and continuous from the fractional Sobolev space Ws,p1(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W<^>{s,p_1}(\mathbb {R}<^>d)$$\end{document} to Ws,p(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${W<^>{s,p}(\mathbb {R}<^>d)}$$\end{document} if b is an element of Ws,p2(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\in W<^>{s,p_2}(\mathbb {R}<^>d)$$\end{document}, from the inhomogeneous Triebel-Lizorkin space Fsp1,q(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_s<^>{p_1,q}(\mathbb {R}<^>d)$$\end{document} to Fsp,q(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_s<^>{p,q}(\mathbb {R}<^>d)$$\end{document} if b is an element of Fsp2,q(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\in F_s<^>{p_2,q} (\mathbb {R}<^>d)$$\end{document} and from the inhomogeneous Besov space Bsp1,q(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_s<^>{p_1,q}(\mathbb {R}<^>d)$$\end{document} to Bsp,q(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_s<^>{p,q}(\mathbb {R}<^>d)$$\end{document} if b is an element of Bsp 2,q(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\in B_s<^>{p_2,q}(\mathbb {R}<^>d)$$\end{document}. It should be pointed out that the main ingredients of proving the above results are some refined and complex difference estimates of higher order maximal commutators as well as some characterizations of the Sobolev spaces, Triebel-Lizorkin spaces and Besov spaces.
引用
收藏
页数:40
相关论文
共 50 条
  • [31] Continuity for maximal commutators of Bochner-Riesz operators with BMO functions
    Jiang, YS
    Tang, L
    Yang, DC
    ACTA MATHEMATICA SCIENTIA, 2001, 21 (03) : 339 - 349
  • [32] CONTINUITY FOR MAXIMAL COMMUTATORS OF BOCHNER-RIESZ OPERATORS WITH BMO FUNCTIONS
    江寅生
    唐林
    杨大春
    ActaMathematicaScientia, 2001, (03) : 339 - 349
  • [33] Continuity of Bilinear Fractional Maximal Commutators with Lipschitz Symbols in Sobolev Spaces
    Jiang, Xixi
    Liu, Feng
    Wen, Yongming
    FRONTIERS OF MATHEMATICS, 2025,
  • [34] Regularity of Commutators of the One-Sided Hardy-Littlewood Maximal Functions
    Zhang, Daiqing
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [35] Higher order commutators for a class of rough operators
    Ding, Y
    Lu, SZ
    ARKIV FOR MATEMATIK, 1999, 37 (01): : 33 - 44
  • [36] Sobolev boundedness and continuity for commutators of the local Hardy-Littlewood maximal function
    Liu, Feng
    Xue, Qingying
    Yabuta, Kozo
    ANNALES FENNICI MATHEMATICI, 2022, 47 (01): : 203 - 235
  • [37] Higher order commutators in the real method of interpolation
    Milman, M
    JOURNAL D ANALYSE MATHEMATIQUE, 1995, 66 : 37 - 55
  • [38] ON RIGHT REGULARITY OF COMMUTATORS
    Jung, Da Woon
    Lee, Chang Ik
    Lee, Yang
    Park, Sangwon
    Ryu, Sung Ju
    Sung, Hyo Jin
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 59 (04) : 853 - 868
  • [39] REGULARITY OF MORREY COMMUTATORS
    Adams, David R.
    Xiao, Jie
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (09) : 4801 - 4818
  • [40] Variational time discretizations of higher order and higher regularity
    Simon Becher
    Gunar Matthies
    BIT Numerical Mathematics, 2021, 61 : 721 - 755