Regularity and continuity of higher order maximal commutators

被引:0
|
作者
Liu, Feng [1 ]
Ma, Yuan [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Higher order maximal commutator; Boundedness and continuity; Sobolev space; Triebel-Lizorkin space; Besov space; CAMPANATO SPACE; OPERATOR; BOUNDEDNESS; COMPACTNESS; TRANSFORM; INTEGRALS;
D O I
10.1007/s13324-024-00952-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let k >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 1$$\end{document}, 0 <=alpha<d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le \alpha <d$$\end{document} and Mb,alpha k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {M}_{b,\alpha }<^>k$$\end{document} be the k-th order fractional maximal commutator. When alpha=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =0$$\end{document}, we denote Mb,alpha k=Mbk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {M}_{b,\alpha }<^>k=\mathfrak {M}_{b}<^>k$$\end{document}. We show that Mb,alpha k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {M}_{b,\alpha }<^>k$$\end{document} is bounded from the first order Sobolev space W1,p1(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W<^>{1,p_1}(\mathbb {R}<^>d)$$\end{document} to W1,p(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W<^>{1,p}(\mathbb {R}<^>d)$$\end{document} where 1<p1,p2,p<infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p_1,p_2,p<\infty $$\end{document}, 1/p=1/p1+k/p2-alpha/d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/p=1/p_1+k/p_2-\alpha /d$$\end{document}. We also prove that if 0<s<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s<1$$\end{document}, 1<p1,p2,p,q<infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p_1,p_2,p,q<\infty $$\end{document} and 1/p=1/p1+k/p2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/p=1/p_1+k/p_2$$\end{document}, then Mbk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {M}_b<^>k$$\end{document} is bounded and continuous from the fractional Sobolev space Ws,p1(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W<^>{s,p_1}(\mathbb {R}<^>d)$$\end{document} to Ws,p(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${W<^>{s,p}(\mathbb {R}<^>d)}$$\end{document} if b is an element of Ws,p2(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\in W<^>{s,p_2}(\mathbb {R}<^>d)$$\end{document}, from the inhomogeneous Triebel-Lizorkin space Fsp1,q(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_s<^>{p_1,q}(\mathbb {R}<^>d)$$\end{document} to Fsp,q(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_s<^>{p,q}(\mathbb {R}<^>d)$$\end{document} if b is an element of Fsp2,q(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\in F_s<^>{p_2,q} (\mathbb {R}<^>d)$$\end{document} and from the inhomogeneous Besov space Bsp1,q(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_s<^>{p_1,q}(\mathbb {R}<^>d)$$\end{document} to Bsp,q(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_s<^>{p,q}(\mathbb {R}<^>d)$$\end{document} if b is an element of Bsp 2,q(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\in B_s<^>{p_2,q}(\mathbb {R}<^>d)$$\end{document}. It should be pointed out that the main ingredients of proving the above results are some refined and complex difference estimates of higher order maximal commutators as well as some characterizations of the Sobolev spaces, Triebel-Lizorkin spaces and Besov spaces.
引用
收藏
页数:40
相关论文
共 50 条
  • [21] Regularity and continuity of the multilinear strong maximal operators
    Liu, Feng
    Xue, Qingying
    Yabuta, Kozo
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 138 : 204 - 241
  • [22] Weighted maximal regularity estimates of higher order elliptic systems on Lipschitz domains
    Geng, Jun
    Xu, Ziyi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 407 : 206 - 235
  • [23] Groups with boundedly many commutators of maximal order
    Longobardi, P.
    Maj, M.
    Shumyatsky, P.
    Traustason, G.
    JOURNAL OF ALGEBRA, 2021, 567 : 269 - 283
  • [24] BOUNDEDNESS OF FRACTIONAL MAXIMAL OPERATOR AND THEIR HIGHER ORDER COMMUTATORS IN GENERALIZED MORREY SPACES ON CARNOT GROUPS
    Vagif GULIYEV
    Ali AKBULUT
    Yagub MAMMADOV
    ActaMathematicaScientia, 2013, 33 (05) : 1329 - 1346
  • [25] BOUNDEDNESS OF FRACTIONAL MAXIMAL OPERATOR AND THEIR HIGHER ORDER COMMUTATORS IN GENERALIZED MORREY SPACES ON CARNOT GROUPS
    Guliyev, Vagif
    Akbulut, Ali
    Mammadov, Yagub
    ACTA MATHEMATICA SCIENTIA, 2013, 33 (05) : 1329 - 1346
  • [26] Higher order commutators in interpolation theory
    Carro, MJ
    Cerda, J
    Soria, J
    MATHEMATICA SCANDINAVICA, 1995, 77 (02) : 301 - 319
  • [27] Regularity and Continuity of Local Multilinear Maximal Type Operators
    Hart, Jarod
    Liu, Feng
    Xue, Qingying
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (04) : 3405 - 3454
  • [28] A note on maximal commutators and commutators of maximal functions
    Agcayazi, Mujdat
    Gogatishvili, Amiran
    Koca, Kerim
    Mustafayev, Rza
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2015, 67 (02) : 581 - 593
  • [29] On the regularity and continuity of the multilinear fractional strong maximal operators
    Liu, Feng
    Xue, Qingying
    Yabuta, Kozo
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (05) : 2070 - 2089
  • [30] Regularity and Continuity of Local Multilinear Maximal Type Operators
    Jarod Hart
    Feng Liu
    Qingying Xue
    The Journal of Geometric Analysis, 2021, 31 : 3405 - 3454