Regularity and continuity of higher order maximal commutators

被引:0
|
作者
Liu, Feng [1 ]
Ma, Yuan [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Higher order maximal commutator; Boundedness and continuity; Sobolev space; Triebel-Lizorkin space; Besov space; CAMPANATO SPACE; OPERATOR; BOUNDEDNESS; COMPACTNESS; TRANSFORM; INTEGRALS;
D O I
10.1007/s13324-024-00952-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let k >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 1$$\end{document}, 0 <=alpha<d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le \alpha <d$$\end{document} and Mb,alpha k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {M}_{b,\alpha }<^>k$$\end{document} be the k-th order fractional maximal commutator. When alpha=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =0$$\end{document}, we denote Mb,alpha k=Mbk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {M}_{b,\alpha }<^>k=\mathfrak {M}_{b}<^>k$$\end{document}. We show that Mb,alpha k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {M}_{b,\alpha }<^>k$$\end{document} is bounded from the first order Sobolev space W1,p1(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W<^>{1,p_1}(\mathbb {R}<^>d)$$\end{document} to W1,p(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W<^>{1,p}(\mathbb {R}<^>d)$$\end{document} where 1<p1,p2,p<infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p_1,p_2,p<\infty $$\end{document}, 1/p=1/p1+k/p2-alpha/d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/p=1/p_1+k/p_2-\alpha /d$$\end{document}. We also prove that if 0<s<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s<1$$\end{document}, 1<p1,p2,p,q<infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p_1,p_2,p,q<\infty $$\end{document} and 1/p=1/p1+k/p2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/p=1/p_1+k/p_2$$\end{document}, then Mbk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {M}_b<^>k$$\end{document} is bounded and continuous from the fractional Sobolev space Ws,p1(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W<^>{s,p_1}(\mathbb {R}<^>d)$$\end{document} to Ws,p(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${W<^>{s,p}(\mathbb {R}<^>d)}$$\end{document} if b is an element of Ws,p2(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\in W<^>{s,p_2}(\mathbb {R}<^>d)$$\end{document}, from the inhomogeneous Triebel-Lizorkin space Fsp1,q(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_s<^>{p_1,q}(\mathbb {R}<^>d)$$\end{document} to Fsp,q(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_s<^>{p,q}(\mathbb {R}<^>d)$$\end{document} if b is an element of Fsp2,q(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\in F_s<^>{p_2,q} (\mathbb {R}<^>d)$$\end{document} and from the inhomogeneous Besov space Bsp1,q(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_s<^>{p_1,q}(\mathbb {R}<^>d)$$\end{document} to Bsp,q(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_s<^>{p,q}(\mathbb {R}<^>d)$$\end{document} if b is an element of Bsp 2,q(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\in B_s<^>{p_2,q}(\mathbb {R}<^>d)$$\end{document}. It should be pointed out that the main ingredients of proving the above results are some refined and complex difference estimates of higher order maximal commutators as well as some characterizations of the Sobolev spaces, Triebel-Lizorkin spaces and Besov spaces.
引用
收藏
页数:40
相关论文
共 50 条
  • [1] Endpoint Sobolev regularity of higher order maximal commutators
    Feng Liu
    Yuan Ma
    Banach Journal of Mathematical Analysis, 2023, 17
  • [2] Endpoint Sobolev regularity of higher order maximal commutators
    Liu, Feng
    Ma, Yuan
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2023, 17 (04)
  • [3] REGULARITY PROPERTIES OF HIGHER ORDER MAXIMAL COMMUTATORS WITH LIPSCHITZ SYMBOLS
    Ma, Yuan
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 61 (06) : 1705 - 1727
  • [4] Regularity and continuity of commutators of multilinear maximal operators
    Liu, Feng
    Xue, Qingying
    Zhang, Pu
    NEW YORK JOURNAL OF MATHEMATICS, 2021, 27 : 1524 - 1553
  • [5] Regularity and continuity of commutators of the Hardy-Littlewood maximal function
    Liu, Feng
    Xue, Qingying
    Zhang, Pu
    MATHEMATISCHE NACHRICHTEN, 2020, 293 (03) : 491 - 509
  • [6] Continuity of Higher Order Commutators on Certain Hardy Spaces
    DING Yong LU Shan Zhen Department of Mathematics
    ActaMathematicaSinica(EnglishSeries), 2002, 18 (02) : 391 - 404
  • [7] Continuity of Higher Order Commutators on Certain Hardy Spaces
    Yong Ding
    Shan Zhen Lu
    Pu Zhang
    Acta Mathematica Sinica, 2002, 18 : 391 - 404
  • [8] Continuity of higher order commutators on certain hardy spaces
    Ding, Y
    Lu, SZ
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2002, 18 (02) : 391 - 404
  • [9] Derivative bounds and continuity of maximal commutators
    Chen, Ting
    Liu, Feng
    STUDIA MATHEMATICA, 2022, 266 (01) : 93 - 119
  • [10] CONTINUITY OF THE MAXIMAL COMMUTATORS IN SOBOLEV SPACES
    Jiang, Xixi
    Liu, Feng
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 61 (03) : 461 - 494