The IFT80/Hedgehog Pathway Regulates the Osteogenic-adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells

被引:1
|
作者
Jiang, Mingyang [1 ]
Zhang, Ke [1 ]
Hu, Yang [1 ]
Lu, Shenyi [2 ]
Wei, Guiqing [1 ]
Liu, Kaicheng [1 ]
Chen, Chuanliang [1 ]
Zou, Xiaochong [1 ]
Dai, Yongheng [1 ]
Gui, Ying [3 ]
Wu, Jing [3 ]
Bo, Huan [4 ]
Bo, Zhandong [1 ]
机构
[1] Guangxi Med Univ, Affiliated Hosp 1, Dept Bone & Joint Surg, Nanning, Peoples R China
[2] Youjiang Med Univ Nationalities, Affiliated Hosp, Dept Rehabil, Baise, Peoples R China
[3] Guangxi Med Univ, Affiliated Hosp 1, Clin Lab Ctr, Nanning, Peoples R China
[4] Nanning 2 High Sch, Int Div, Nanning, Peoples R China
关键词
Steroid-induced avascular necrosis of the femoral head; IFT80; hedgehog pathway; bone marrow mesenchymal stem cells; osteogenic-adipogenic differentiation; FEMORAL-HEAD; STROMAL CELLS; OSTEONECROSIS; HEDGEHOG; CILIA; IFT80;
D O I
10.2174/0109298673300113240418050128
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background Steroid-induced avascular necrosis of the femoral head (SANFH) is a typical refractory disease that often progresses irreversibly and has a high disability rate. Numerous studies have confirmed that abnormal osteogenic-adipogenic differentiation of bone marrow mesenchymal stem cells (BM-MSCs) is one of the major factors of SANFH. However, the mechanism remains to be elucidated.Objectives This study aimed to investigate the mechanism and effect of the IFT80/Hedgehog-mediated osteogenic-adipogenic differentiation of BM-MSCs in SANFH.Methods Femoral head specimens of SANFH patients and femoral neck fractures (FNF) patients were collected to detect the expression of IFT80, Shh and osteogenic-adipogenic differentiation-related genes by immunohistochemistry (IHC), western blot (WB) and Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR). Based on the rabbit SANFH model, the mRNA expression and protein level of IFT80 and Shh were detected by RT-qPCR and WB. After the osteogenic/adipogenic differentiation based on rabbit BM-MSCs, the IFT80, Gli1, PPAR-gamma, and Runx2 expression were detected. Differences in alkaline phosphodiesterase activity, calcium nodule, quantification/distribution of lipid droplets, expression of IFT80/Hedgehog axis, and the level of osteogenic-adipogenic associated factors were determined after IFT80 overexpression.Results RT-qPCR, WB and IHC revealed that IFT80 and Shh lowly expressed in the osteoblasts and intra-trabecular osteocytes at the edge of trabeculae and in the intercellular matrix of the bone marrow lumen in the SANFH specimens; The Runx2 expression was low, while the PPAR-gamma expression was high in both human specimens and animal models of SANFH, suggesting that the balance of osteogenic-adipogenic differentiation was dysregulated. Rabbit BM-MSCs with stable overexpression of IFT80 showed increased alkaline phosphatase activity after induction of osteogenic differentiation, increased calcium nodule production, and decreased adipogenesis after induction of adipogenic differentiation.Conclusion There is a dysregulation of the balance of osteogenic-adipogenic differentiation in SANFH. IFT80 may inhibit adipogenic differentiation while promoting osteogenic differentiation in rabbit BM-MSCs by activating the Hedgehog pathway.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Regulation of osteogenic differentiation of bone marrow mesenchymal stem cells by intermittent hypoxia
    Wei, Silong
    Guo, Xiaojing
    Lu, Xiaofeng
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 2018, 11 (11): : 11995 - 12001
  • [42] Tilianin Promotes the Proliferation and Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells
    Xue, Zhixing
    Yang, Jin
    Yu, Panfeng
    CURRENT TOPICS IN NUTRACEUTICAL RESEARCH, 2022, 20 (02) : 259 - 264
  • [43] Roles of circular RNAs in osteogenic differentiation of bone marrow mesenchymal stem cells
    Wang, Jicheng
    Wang, Tengyun
    Zhang, Fujie
    Zhang, Yangyang
    Guo, Yongzhi
    Jiang, Xin
    Yang, Bo
    MOLECULAR MEDICINE REPORTS, 2022, 26 (01)
  • [44] The Immunoregulatory Property of Bone Marrow Mesenchymal Stem Cells during Osteogenic Differentiation
    Zhou, Y.
    Huang, R.
    Xiao, Y.
    TISSUE ENGINEERING PART A, 2015, 21 : S43 - S43
  • [45] Effects of hypoxia on osteogenic differentiation of rat bone marrow mesenchymal stem cells
    Yating Wang
    Juan Li
    Yanmin Wang
    Lei Lei
    Chunmiao Jiang
    Shu An
    Yuxiang Zhan
    Qian Cheng
    Zhihe Zhao
    Jun Wang
    Lingyong Jiang
    Molecular and Cellular Biochemistry, 2012, 362 : 25 - 33
  • [46] Effects of simvastatin on the osteogenic differentiation and immunomodulation of bone marrow mesenchymal stem cells
    Niu, Jianyi
    Ding, Gang
    Zhang, Li
    MOLECULAR MEDICINE REPORTS, 2015, 12 (06) : 8237 - 8240
  • [47] Comparative characterization and osteogenic / adipogenic differentiation of mesenchymal stem cells derived from male rat hair follicles and bone marrow
    Zaki A.K.A.
    Almundarij T.I.
    Abo-Aziza F.A.M.
    Cell Regeneration, 9 (1)
  • [48] MiR-141 Modulates Bone Marrow Mesenchymal Stem Cells (BMSCs) Osteogenic/Adipogenic Differentiation Under Oxidative Stress
    You, Chuanfei
    Liu, Jun
    Qiu, Ruoyu
    Xu, Leijun
    Dai, Furen
    Ni, Qianzhao
    Qiu, Weisheng
    JOURNAL OF BIOMATERIALS AND TISSUE ENGINEERING, 2022, 12 (07) : 1466 - 1471
  • [49] Enhanced adipogenic differentiation of bovine bone marrow-derived mesenchymal stem cells
    Lee, So Hyun
    Cha, Sang-Ho
    Kim, Chan-Lan
    Lillehoj, Hyun S.
    Song, Jae-Young
    Lee, Kyung-Woo
    JOURNAL OF APPLIED ANIMAL RESEARCH, 2015, 43 (01) : 15 - 21
  • [50] Mettl3 Regulates Osteogenic Differentiation and Alternative Splicing of Vegfa in Bone Marrow Mesenchymal Stem Cells
    Tian, Cheng
    Huang, Yanlan
    Li, Qimeng
    Feng, Zhihui
    Xu, Qiong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (03)