The IFT80/Hedgehog Pathway Regulates the Osteogenic-adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells

被引:1
|
作者
Jiang, Mingyang [1 ]
Zhang, Ke [1 ]
Hu, Yang [1 ]
Lu, Shenyi [2 ]
Wei, Guiqing [1 ]
Liu, Kaicheng [1 ]
Chen, Chuanliang [1 ]
Zou, Xiaochong [1 ]
Dai, Yongheng [1 ]
Gui, Ying [3 ]
Wu, Jing [3 ]
Bo, Huan [4 ]
Bo, Zhandong [1 ]
机构
[1] Guangxi Med Univ, Affiliated Hosp 1, Dept Bone & Joint Surg, Nanning, Peoples R China
[2] Youjiang Med Univ Nationalities, Affiliated Hosp, Dept Rehabil, Baise, Peoples R China
[3] Guangxi Med Univ, Affiliated Hosp 1, Clin Lab Ctr, Nanning, Peoples R China
[4] Nanning 2 High Sch, Int Div, Nanning, Peoples R China
关键词
Steroid-induced avascular necrosis of the femoral head; IFT80; hedgehog pathway; bone marrow mesenchymal stem cells; osteogenic-adipogenic differentiation; FEMORAL-HEAD; STROMAL CELLS; OSTEONECROSIS; HEDGEHOG; CILIA; IFT80;
D O I
10.2174/0109298673300113240418050128
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background Steroid-induced avascular necrosis of the femoral head (SANFH) is a typical refractory disease that often progresses irreversibly and has a high disability rate. Numerous studies have confirmed that abnormal osteogenic-adipogenic differentiation of bone marrow mesenchymal stem cells (BM-MSCs) is one of the major factors of SANFH. However, the mechanism remains to be elucidated.Objectives This study aimed to investigate the mechanism and effect of the IFT80/Hedgehog-mediated osteogenic-adipogenic differentiation of BM-MSCs in SANFH.Methods Femoral head specimens of SANFH patients and femoral neck fractures (FNF) patients were collected to detect the expression of IFT80, Shh and osteogenic-adipogenic differentiation-related genes by immunohistochemistry (IHC), western blot (WB) and Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR). Based on the rabbit SANFH model, the mRNA expression and protein level of IFT80 and Shh were detected by RT-qPCR and WB. After the osteogenic/adipogenic differentiation based on rabbit BM-MSCs, the IFT80, Gli1, PPAR-gamma, and Runx2 expression were detected. Differences in alkaline phosphodiesterase activity, calcium nodule, quantification/distribution of lipid droplets, expression of IFT80/Hedgehog axis, and the level of osteogenic-adipogenic associated factors were determined after IFT80 overexpression.Results RT-qPCR, WB and IHC revealed that IFT80 and Shh lowly expressed in the osteoblasts and intra-trabecular osteocytes at the edge of trabeculae and in the intercellular matrix of the bone marrow lumen in the SANFH specimens; The Runx2 expression was low, while the PPAR-gamma expression was high in both human specimens and animal models of SANFH, suggesting that the balance of osteogenic-adipogenic differentiation was dysregulated. Rabbit BM-MSCs with stable overexpression of IFT80 showed increased alkaline phosphatase activity after induction of osteogenic differentiation, increased calcium nodule production, and decreased adipogenesis after induction of adipogenic differentiation.Conclusion There is a dysregulation of the balance of osteogenic-adipogenic differentiation in SANFH. IFT80 may inhibit adipogenic differentiation while promoting osteogenic differentiation in rabbit BM-MSCs by activating the Hedgehog pathway.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Epigenetic Plasticity Drives Adipogenic and Osteogenic Differentiation of Marrow-derived Mesenchymal Stem Cells
    Meyer, Mark B.
    Benkusky, Nancy A.
    Sen, Buer
    Rubin, Janet
    Pike, J. Wesley
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2016, 291 (34) : 17829 - 17847
  • [32] Morinda officinalis polysaccharide regulates rat bone mesenchymal stem cell osteogenic-adipogenic differentiation in osteoporosis by upregulating miR-21 and activating the PI3K/AKT pathway
    Wu, Pei-Yu
    Chen, Wen
    Huang, He
    Tang, Wang
    Liang, Jie
    KAOHSIUNG JOURNAL OF MEDICAL SCIENCES, 2022, 38 (07): : 675 - 685
  • [33] Icariin Facilitates Osteogenic Differentiation and Suppresses Adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells by Enhancing SOST Methylation in Postmenopausal Osteoporosis
    Chen, Xu
    Liu, Xizhe
    Wan, Junming
    Hu, Yanqing
    Wei, Fuxin
    JOURNAL OF GENE MEDICINE, 2025, 27 (01):
  • [34] Foxc2 over-expression in bone marrow mesenchymal stem cells stimulates osteogenic differentiation and inhibits adipogenic differentiation
    You, Wulin
    Fan, Lihong
    Duan, Dapeng
    Tian, Lei
    Dang, Xiaoqian
    Wang, Chunsheng
    Wang, Kunzheng
    MOLECULAR AND CELLULAR BIOCHEMISTRY, 2014, 386 (1-2) : 125 - 134
  • [35] Foxc2 over-expression in bone marrow mesenchymal stem cells stimulates osteogenic differentiation and inhibits adipogenic differentiation
    Wulin You
    Lihong Fan
    Dapeng Duan
    Lei Tian
    Xiaoqian Dang
    Chunsheng Wang
    Kunzheng Wang
    Molecular and Cellular Biochemistry, 2014, 386 : 125 - 134
  • [36] Uric Acid Promotes Osteogenic Differentiation and Inhibits Adipogenic Differentiation of Human Bone Mesenchymal Stem Cells
    Li, Hui-Zhang
    Chen, Zhi
    Hou, Cang-Long
    Tang, Yi-Xing
    Wang, Fei
    Fu, Qing-Ge
    JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, 2015, 29 (08) : 382 - 387
  • [37] Catalpol promotes the osteogenic differentiation of bone marrow mesenchymal stem cells via the Wnt/β-catenin pathway
    Yu Zhu
    Yanmao Wang
    Yachao Jia
    Jia Xu
    Yimin Chai
    Stem Cell Research & Therapy, 10
  • [38] Catalpol promotes the osteogenic differentiation of bone marrow mesenchymal stem cells via the Wnt/-catenin pathway
    Zhu, Yu
    Wang, Yanmao
    Jia, Yachao
    Xu, Jia
    Chai, Yimin
    STEM CELL RESEARCH & THERAPY, 2019, 10 (1)
  • [39] MicroRNA Regulation in Osteogenic and Adipogenic Differentiation of Bone Mesenchymal Stem Cells and its Application in Bone Regeneration
    Li, Binbin
    CURRENT STEM CELL RESEARCH & THERAPY, 2018, 13 (01) : 26 - 30
  • [40] Effects of hypoxia on osteogenic differentiation of rat bone marrow mesenchymal stem cells
    Wang, Yating
    Li, Juan
    Wang, Yanmin
    Lei, Lei
    Jiang, Chunmiao
    An, Shu
    Zhan, Yuxiang
    Cheng, Qian
    Zhao, Zhihe
    Wang, Jun
    Jiang, Lingyong
    MOLECULAR AND CELLULAR BIOCHEMISTRY, 2012, 362 (1-2) : 25 - 33