An inertial method for solving split equality quasimonotone Minty variational inequality problems in reflexive Banach spaces

被引:0
|
作者
Belay, Yirga A. [1 ,2 ]
Zegeye, Habtu [1 ]
Boikanyo, Oganeditse A. [1 ]
Gidey, Hagos H. [1 ]
Kagiso, Dintle [1 ]
机构
[1] Botswana Int Univ Sci & Technol, Dept Math & Stat Sci, Pvt Bag 0016, Palapye, Botswana
[2] Aksum Univ, Dept Math, POB 1010, Axum, Ethiopia
关键词
Banach spaces; Bregman distance; Minty variational inequality; Quasimonotone mapping; Split equality; Strong convergence; NONEXPANSIVE-MAPPINGS; STRONG-CONVERGENCE; ASYMPTOTIC-BEHAVIOR; SEMIGROUPS; ALGORITHM; OPERATORS;
D O I
10.1007/s12215-024-01025-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce the split equality Minty variational inequality problem in reflexive real Banach spaces. Then we construct a single projection inertial algorithm for solving the introduced problem. We establish a strong convergence result with the assumption that the mappings under consideration are Lipschitz continuous and quasimonotone. We give some specific applications of the main result and finally provide a numerical example to demonstrate the workability of our method.
引用
收藏
页码:2037 / 2067
页数:31
相关论文
共 50 条