An inertial method for solving split equality quasimonotone Minty variational inequality problems in reflexive Banach spaces

被引:0
|
作者
Belay, Yirga A. [1 ,2 ]
Zegeye, Habtu [1 ]
Boikanyo, Oganeditse A. [1 ]
Gidey, Hagos H. [1 ]
Kagiso, Dintle [1 ]
机构
[1] Botswana Int Univ Sci & Technol, Dept Math & Stat Sci, Pvt Bag 0016, Palapye, Botswana
[2] Aksum Univ, Dept Math, POB 1010, Axum, Ethiopia
关键词
Banach spaces; Bregman distance; Minty variational inequality; Quasimonotone mapping; Split equality; Strong convergence; NONEXPANSIVE-MAPPINGS; STRONG-CONVERGENCE; ASYMPTOTIC-BEHAVIOR; SEMIGROUPS; ALGORITHM; OPERATORS;
D O I
10.1007/s12215-024-01025-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce the split equality Minty variational inequality problem in reflexive real Banach spaces. Then we construct a single projection inertial algorithm for solving the introduced problem. We establish a strong convergence result with the assumption that the mappings under consideration are Lipschitz continuous and quasimonotone. We give some specific applications of the main result and finally provide a numerical example to demonstrate the workability of our method.
引用
收藏
页码:2037 / 2067
页数:31
相关论文
共 50 条
  • [21] A VARIATIONAL INEQUALITY THEORY FOR CONSTRAINED PROBLEMS IN REFLEXIVE BANACH SPACES
    Asfaw, T. M.
    ADVANCES IN OPERATOR THEORY, 2019, 4 (02) : 462 - 480
  • [22] A Tseng extragradient method for solving variational inequality problems in Banach spaces
    Oyewole, O. K.
    Abass, H. A.
    Mebawondu, A. A.
    Aremu, K. O.
    NUMERICAL ALGORITHMS, 2022, 89 (02) : 769 - 789
  • [23] A simple projection method for solving quasimonotone variational inequality problems
    Chinedu Izuchukwu
    Yekini Shehu
    Jen-Chih Yao
    Optimization and Engineering, 2023, 24 : 915 - 938
  • [24] Inertial split projection and contraction method for pseudomonotone variational inequality problem in Banach spaces
    Maluleka, Rose
    Ugwunnadi, G. C.
    Aphane, M.
    Abass, H. A.
    Khan, A. R.
    CARPATHIAN JOURNAL OF MATHEMATICS, 2024, 40 (01) : 99 - 120
  • [25] Inertial self-adaptive Bregman projection method for finite family of variational inequality problems in reflexive Banach spaces
    Oyewole, O. K.
    Jolaoso, L. O.
    Aremu, K. O.
    Olayiwola, M. O.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (06):
  • [26] Inertial self-adaptive Bregman projection method for finite family of variational inequality problems in reflexive Banach spaces
    O. K. Oyewole
    L. O. Jolaoso
    K. O. Aremu
    M. O. Olayiwola
    Computational and Applied Mathematics, 2022, 41
  • [27] An improved inertial extragradient subgradient method for solving split variational inequality problems
    Okeke, Chibueze C.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (01):
  • [28] An improved inertial extragradient subgradient method for solving split variational inequality problems
    Chibueze C. Okeke
    Boletín de la Sociedad Matemática Mexicana, 2022, 28
  • [29] Convergence Analysis of a New Bregman Extragradient Method for Solving Fixed Point Problems and Variational Inequality Problems in Reflexive Banach Spaces
    Shaotao Hu
    Yuanheng Wang
    Qiao-Li Dong
    Journal of Scientific Computing, 2023, 96
  • [30] Convergence Analysis of a New Bregman Extragradient Method for Solving Fixed Point Problems and Variational Inequality Problems in Reflexive Banach Spaces
    Hu, Shaotao
    Wang, Yuanheng
    Dong, Qiao-Li
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 96 (01)