An inertial method for solving split equality quasimonotone Minty variational inequality problems in reflexive Banach spaces

被引:0
|
作者
Belay, Yirga A. [1 ,2 ]
Zegeye, Habtu [1 ]
Boikanyo, Oganeditse A. [1 ]
Gidey, Hagos H. [1 ]
Kagiso, Dintle [1 ]
机构
[1] Botswana Int Univ Sci & Technol, Dept Math & Stat Sci, Pvt Bag 0016, Palapye, Botswana
[2] Aksum Univ, Dept Math, POB 1010, Axum, Ethiopia
关键词
Banach spaces; Bregman distance; Minty variational inequality; Quasimonotone mapping; Split equality; Strong convergence; NONEXPANSIVE-MAPPINGS; STRONG-CONVERGENCE; ASYMPTOTIC-BEHAVIOR; SEMIGROUPS; ALGORITHM; OPERATORS;
D O I
10.1007/s12215-024-01025-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce the split equality Minty variational inequality problem in reflexive real Banach spaces. Then we construct a single projection inertial algorithm for solving the introduced problem. We establish a strong convergence result with the assumption that the mappings under consideration are Lipschitz continuous and quasimonotone. We give some specific applications of the main result and finally provide a numerical example to demonstrate the workability of our method.
引用
收藏
页码:2037 / 2067
页数:31
相关论文
共 50 条
  • [1] Inertial method for solving split equality Hammerstein-type equation problems in reflexive Banach spaces
    Belay, Yirga Abebe
    Zegeye, Habtu
    Boikanyo, Oganeditse A.
    OPTIMIZATION, 2025, 74 (03) : 709 - 742
  • [2] Modified Inertial Method for Solving Bilevel Split Quasimonotone Variational Inequality and Fixed Point Problems
    Maluleka, R.
    Ugwunnadi, G. C.
    Aphane, M.
    Abass, H. A.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2025, 15 (01): : 169 - 190
  • [3] Stability Analysis for Minty Mixed Variational Inequality in Reflexive Banach Spaces
    Zhong, Ren-you
    Huang, Nan-jing
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2010, 147 (03) : 454 - 472
  • [4] Stability Analysis for Minty Mixed Variational Inequality in Reflexive Banach Spaces
    Ren-you Zhong
    Nan-jing Huang
    Journal of Optimization Theory and Applications, 2010, 147 : 454 - 472
  • [5] Inertial Extragradient Method for Solving Variational Inequality and Fixed Point Problems of a Bregman Demigeneralized Mapping in a Reflexive Banach Spaces
    Abass, H. A.
    Godwin, G. C.
    Narain, O. K.
    Darvish, V.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2022, 43 (08) : 933 - 960
  • [6] Split equality variational inequality problems for pseudomonotone mappings in Banach spaces
    Boikanyo, Oganeditse A.
    Zegeye, Habtu
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2021, 66 (01): : 139 - 158
  • [7] Inertial Method for Solving Pseudomonotone Variational Inequality and Fixed Point Problems in Banach Spaces
    Maluleka, Rose
    Ugwunnadi, Godwin Chidi
    Aphane, Maggie
    AXIOMS, 2023, 12 (10)
  • [8] Inertial subgradient extragradient method for solving pseudomonotone variational inequality problems in Banach spaces
    Peng, Zai-Yun
    Peng, Zhi-Ying
    Cai, Gang
    Li, Gao-Xi
    APPLICABLE ANALYSIS, 2024, 103 (10) : 1769 - 1789
  • [9] An inertial projection and contraction method for solving bilevel quasimonotone variational inequality problems
    Abuchu, J. A.
    Ugwunnadi, G. C.
    Narain, O. K.
    JOURNAL OF ANALYSIS, 2023, 31 (04): : 2915 - 2942
  • [10] An inertial projection and contraction method for solving bilevel quasimonotone variational inequality problems
    J. A. Abuchu
    G. C. Ugwunnadi
    O. K. Narain
    The Journal of Analysis, 2023, 31 (4) : 2915 - 2942