On a Schro<spacing diaeresis>dinger-Kirchhoff Type Equation Involving the Fractional p-Laplacian without the Ambrosetti-Rabinowitz Condition

被引:0
|
作者
Bouabdallah, Mohamed [1 ]
Chakrone, Omar [1 ]
Chehabi, Mohammed [1 ]
机构
[1] Univ Mohammed 1st, Fac Sci, Dept Math & Comp, Lab Nonlinear Anal, Oujda, Morocco
关键词
fractional p-Laplacian operator; fractional Sobolev space; Schro center dot dinger-Kirchhoff type equation; Ambrosetti-Rabinowitz condition; variational methods; SEMILINEAR SCHRODINGER-EQUATIONS; ELLIPTIC PROBLEMS; DIRICHLET PROBLEM; EXISTENCE; MULTIPLICITY; TRANSPORT;
D O I
10.15407/mag20.01.041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the existence and multiplicity of many weak solutions for the following fractional Schr odinger-Kirchhoff type equation: (a+b integral integral(2N)(R)|u(x)-u(y)|p/|x-y|(N+ps)dxdy)(p-1)x(-triangle)(s)(p)u+lambda V(x)|u|(p-2)u =f(x,u) +h(x) inR(N), whereN > sp,a,b >0 are constants,lambda is a parameter, (-triangle)spis the frac-tionalp-Laplacian operator with 0< s <1< p <infinity, nonlinearityf(x,u)and potential functionV(x) satisfy some suitable assumptions. Under thoseconditions, some new results are obtained for lambda >0 large enough by applyingthe variation methods
引用
收藏
页码:41 / 65
页数:25
相关论文
共 50 条