The fractional Hartree equation without the Ambrosetti-Rabinowitz condition

被引:6
|
作者
Francesconi, Mauro [1 ]
Mugnai, Dimitri [1 ]
机构
[1] Univ Perugia, Dipartimento Matemat & Informat, Via Vanvitelli 1, I-06123 Perugia, Italy
关键词
Pseudo-relativistic Hartree equation; Superlinear reaction; Ambrosetti-Rabinowitz condition; COUPLED KLEIN-GORDON; SOLITARY WAVES; QUANTUM-MECHANICS; MAXWELL EQUATIONS; BOSON STARS; LAPLACIAN; NONEXISTENCE; EXISTENCE; COLLAPSE;
D O I
10.1016/j.nonrwa.2016.07.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a class of pseudo-relativistic Hartree equations in presence of general nonlinearities not satisfying the Ambrosetti-Rabinowitz condition. Using variational methods based on critical point theory, we show the existence of two non trivial signed solutions, one positive and one negative. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:363 / 375
页数:13
相关论文
共 50 条
  • [1] Solutions of nonlinear Schrodinger equation with fractional Laplacian without the Ambrosetti-Rabinowitz condition
    Gou, Tian-Xiang
    Sun, Hong-Rui
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 : 409 - 416
  • [2] ON FRACTIONAL SCHRODINGER EQUATIONS IN RN WITHOUT THE AMBROSETTI-RABINOWITZ CONDITION
    Secchi, Simone
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2016, 47 (01) : 19 - 41
  • [3] A multiplicity result for a nonlinear fractional Schrodinger equation in RN without the Ambrosetti-Rabinowitz condition
    Alves, Claudianor O.
    Ambrosio, Vincenzo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 466 (01) : 498 - 522
  • [4] MULTIPLE SOLUTIONS TO FRACTIONAL EQUATIONS WITHOUT THE AMBROSETTI-RABINOWITZ CONDITION
    Pei, Ruichang
    Zhang, Jihui
    Ma, Caochuan
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [5] SUPERLINEAR FRACTIONAL BOUNDARY VALUE PROBLEMS WITHOUT THE AMBROSETTI-RABINOWITZ CONDITION
    Ge, Bin
    Lu, Jian-Fang
    Zhao, Ting-Ting
    Zhou, Kang
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [6] PERIODIC SOLUTIONS FOR A SUPERLINEAR FRACTIONAL PROBLEM WITHOUT THE AMBROSETTI-RABINOWITZ CONDITION
    Ambrosio, Vincenzo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (05) : 2265 - 2284
  • [7] Quasilinear Problems without the Ambrosetti-Rabinowitz Condition
    Candela, Anna Maria
    Fragnelli, Genni
    Mugnai, Dimitri
    MINIMAX THEORY AND ITS APPLICATIONS, 2021, 6 (02): : 239 - 250
  • [8] On the Ambrosetti-Rabinowitz superlinear condition
    Liu, ZL
    Wang, ZQ
    ADVANCED NONLINEAR STUDIES, 2004, 4 (04) : 563 - 574
  • [9] On quasilinear elliptic problems without the Ambrosetti-Rabinowitz condition
    Carvalho, M. L. M.
    Goncalves, Jose V. A.
    da Silva, E. D.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 426 (01) : 466 - 483
  • [10] NONHOMOGENEOUS DIRICHLET PROBLEMS WITHOUT THE AMBROSETTI-RABINOWITZ CONDITION
    Li, Gang
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    Zhang, Qihu
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2018, 51 (01) : 55 - 77