On a Schro<spacing diaeresis>dinger-Kirchhoff Type Equation Involving the Fractional p-Laplacian without the Ambrosetti-Rabinowitz Condition

被引:0
|
作者
Bouabdallah, Mohamed [1 ]
Chakrone, Omar [1 ]
Chehabi, Mohammed [1 ]
机构
[1] Univ Mohammed 1st, Fac Sci, Dept Math & Comp, Lab Nonlinear Anal, Oujda, Morocco
关键词
fractional p-Laplacian operator; fractional Sobolev space; Schro center dot dinger-Kirchhoff type equation; Ambrosetti-Rabinowitz condition; variational methods; SEMILINEAR SCHRODINGER-EQUATIONS; ELLIPTIC PROBLEMS; DIRICHLET PROBLEM; EXISTENCE; MULTIPLICITY; TRANSPORT;
D O I
10.15407/mag20.01.041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the existence and multiplicity of many weak solutions for the following fractional Schr odinger-Kirchhoff type equation: (a+b integral integral(2N)(R)|u(x)-u(y)|p/|x-y|(N+ps)dxdy)(p-1)x(-triangle)(s)(p)u+lambda V(x)|u|(p-2)u =f(x,u) +h(x) inR(N), whereN > sp,a,b >0 are constants,lambda is a parameter, (-triangle)spis the frac-tionalp-Laplacian operator with 0< s <1< p <infinity, nonlinearityf(x,u)and potential functionV(x) satisfy some suitable assumptions. Under thoseconditions, some new results are obtained for lambda >0 large enough by applyingthe variation methods
引用
收藏
页码:41 / 65
页数:25
相关论文
共 50 条
  • [41] Existence and nonexistence of solutions for a class of Kirchhoff type equation involving fractional p-Laplacian
    Liu, Senli
    Chen, Haibo
    Yang, Jie
    Su, Yu
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (03)
  • [42] Existence and nonexistence of solutions for a class of Kirchhoff type equation involving fractional p-Laplacian
    Senli Liu
    Haibo Chen
    Jie Yang
    Yu Su
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [43] Existence result for fractional Schrodinger-Poisson systems involving a Bessel operator without Ambrosetti-Rabinowitz condition
    Shen, Liejun
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (01) : 296 - 306
  • [44] Superlinear Kirchhoff-type problems of the fractional p-Laplacian without the (AR) condition
    Zuo, Jiabin
    An, Tianqing
    Li, Mingwei
    BOUNDARY VALUE PROBLEMS, 2018,
  • [45] Superlinear Kirchhoff-type problems of the fractional p-Laplacian without the (AR) condition
    Jiabin Zuo
    Tianqing An
    Mingwei Li
    Boundary Value Problems, 2018
  • [46] Qualitative Analysis for a Degenerate Kirchhoff-Type Diffusion Equation Involving the Fractional p-Laplacian
    Xu, Guangyu
    Zhou, Jun
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (SUPPL 1): : S465 - S508
  • [47] Qualitative Analysis for a Degenerate Kirchhoff-Type Diffusion Equation Involving the Fractional p-Laplacian
    Guangyu Xu
    Jun Zhou
    Applied Mathematics & Optimization, 2021, 84 : 465 - 508
  • [48] A critical Kirchhoff type problem involving the fractional p-Laplacian in RN
    Xiang, Mingqi
    Zhang, Binlin
    Zhang, Xia
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2018, 63 (05) : 652 - 670
  • [49] On Critical Schrödinger–Kirchhoff-Type Problems Involving the Fractional p-Laplacian with Potential Vanishing at Infinity
    Nguyen Van Thin
    Mingqi Xiang
    Binlin Zhang
    Mediterranean Journal of Mathematics, 2021, 18
  • [50] Infinitely many solutions for a bi-nonlocal problem of s(m)-Kirchhoff-type without Ambrosetti-Rabinowitz condition
    Bouaam, Hind
    El Ouaarabi, Mohamed
    Melliani, Said
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (01) : 496 - 516