Parrondo's effect in continuous-time quantum walks

被引:4
|
作者
Ximenes, J. J. [1 ]
Pires, M. A. [2 ]
Villas-Boas, J. M. [1 ]
机构
[1] Univ Fed Uberlandia, Inst Fis, BR-38400902 Uberlandia, MG, Brazil
[2] Univ Fed Alagoas, BR-57480000 Delmiro Gouveia, Alagoas, Brazil
关键词
GAMES;
D O I
10.1103/PhysRevA.109.032417
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a manifestation of a Parrondo's effect in a continuous -time quantum walk (CTQW). In our protocol we consider a CTQW in the presence of a time -dependent transition defect. Our results show that the alternation between defects, that individually are detrimental to the wavepacket spreading, can paradoxically enhance overall wavepacket propagation. Our findings pave the way for the exploration of unconventional mechanisms that can potentially harness the adverse effects of defects to enhance quantum transport.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Steady states of continuous-time open quantum walks
    Liu, Chaobin
    Balu, Radhakrishnan
    QUANTUM INFORMATION PROCESSING, 2017, 16 (07)
  • [32] Link Prediction with Continuous-Time Classical and Quantum Walks
    Goldsmith, Mark
    Saarinen, Harto
    Garcia-Perez, Guillermo
    Malmi, Joonas
    Rossi, Matteo A. C.
    Maniscalco, Sabrina
    ENTROPY, 2023, 25 (05)
  • [33] Recurrence and Transience of Continuous-Time Open Quantum Walks
    Bardet, Ivan
    Bringuier, Hugo
    Pautrat, Yan
    Pellegrini, Clement
    SEMINAIRE DE PROBABILITES L, 2019, 2252 : 493 - 518
  • [34] Selected open problems in continuous-time quantum walks
    Coutinho, Gabriel
    Guo, Krystal
    SPECIAL MATRICES, 2024, 12 (01):
  • [35] Pseudo-Hermitian continuous-time quantum walks
    Salimi, S.
    Sorouri, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (27)
  • [36] Continuous-time quantum walks on directed bipartite graphs
    Todtli, Beat
    Laner, Monika
    Semenov, Jouri
    Paoli, Beatrice
    Blattner, Marcel
    Kunegis, Jerome
    PHYSICAL REVIEW A, 2016, 94 (05)
  • [37] Decoherence and classicalization of continuous-time quantum walks on graphs
    Bressanini, Gabriele
    Benedetti, Claudia
    Paris, Matteo G. A.
    QUANTUM INFORMATION PROCESSING, 2022, 21 (09)
  • [38] Evolution of continuous-time quantum random walks on circles
    Inui, N
    Kasahara, K
    Konishi, Y
    Konno, N
    FLUCTUATION AND NOISE LETTERS, 2005, 5 (01): : L73 - L83
  • [39] Connecting the discrete- and continuous-time quantum walks
    Strauch, Frederick W.
    PHYSICAL REVIEW A, 2006, 74 (03):
  • [40] Simplifying continuous-time quantum walks on dynamic graphs
    Rebekah Herrman
    Thomas G. Wong
    Quantum Information Processing, 2022, 21