Parrondo's effect in continuous-time quantum walks

被引:4
|
作者
Ximenes, J. J. [1 ]
Pires, M. A. [2 ]
Villas-Boas, J. M. [1 ]
机构
[1] Univ Fed Uberlandia, Inst Fis, BR-38400902 Uberlandia, MG, Brazil
[2] Univ Fed Alagoas, BR-57480000 Delmiro Gouveia, Alagoas, Brazil
关键词
GAMES;
D O I
10.1103/PhysRevA.109.032417
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a manifestation of a Parrondo's effect in a continuous -time quantum walk (CTQW). In our protocol we consider a CTQW in the presence of a time -dependent transition defect. Our results show that the alternation between defects, that individually are detrimental to the wavepacket spreading, can paradoxically enhance overall wavepacket propagation. Our findings pave the way for the exploration of unconventional mechanisms that can potentially harness the adverse effects of defects to enhance quantum transport.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Link prediction with continuous-time classical and quantum walks
    Goldsmith, Mark
    García-Pérez, Guillermo
    Malmi, Joonas
    Rossi, Matteo A.C.
    Saarinen, Harto
    Maniscalco, Sabrina
    arXiv, 2022,
  • [22] Dynamics of continuous-time quantum walks in restricted geometries
    Agliari, E.
    Blumen, A.
    Muelken, O.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (44)
  • [23] Transport Efficiency of Continuous-Time Quantum Walks on Graphs
    Razzoli, Luca
    Paris, Matteo G. A.
    Bordone, Paolo
    ENTROPY, 2021, 23 (01) : 1 - 25
  • [24] Continuous-time quantum walks on multilayer dendrimer networks
    Galiceanu, Mircea
    Strunz, Walter T.
    PHYSICAL REVIEW E, 2016, 94 (02)
  • [25] One-Dimensional Continuous-Time Quantum Walks
    ben-Avraham, D.
    Bollt, E. M.
    Tamon, C.
    QUANTUM INFORMATION PROCESSING, 2004, 3 (1-5) : 295 - 308
  • [26] Decoherence and classicalization of continuous-time quantum walks on graphs
    Gabriele Bressanini
    Claudia Benedetti
    Matteo G. A. Paris
    Quantum Information Processing, 21
  • [27] One-Dimensional Continuous-Time Quantum Walks
    D. ben-Avraham
    E.M. Bollt
    C. Tamon
    Quantum Information Processing, 2004, 3 : 295 - 308
  • [28] Physical realizability of continuous-time quantum stochastic walks
    Taketani, Bruno G.
    Govia, Luke C. G.
    Wilhelm, Frank K.
    PHYSICAL REVIEW A, 2018, 97 (05)
  • [29] Simplifying continuous-time quantum walks on dynamic graphs
    Herrman, Rebekah
    Wong, Thomas G.
    QUANTUM INFORMATION PROCESSING, 2022, 21 (02)
  • [30] Continuous-time quantum walks on the threshold network model
    Ide, Yusuke
    Konno, Norio
    MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2010, 20 (06) : 1079 - 1090