Parrondo's effect in continuous-time quantum walks

被引:4
|
作者
Ximenes, J. J. [1 ]
Pires, M. A. [2 ]
Villas-Boas, J. M. [1 ]
机构
[1] Univ Fed Uberlandia, Inst Fis, BR-38400902 Uberlandia, MG, Brazil
[2] Univ Fed Alagoas, BR-57480000 Delmiro Gouveia, Alagoas, Brazil
关键词
GAMES;
D O I
10.1103/PhysRevA.109.032417
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a manifestation of a Parrondo's effect in a continuous -time quantum walk (CTQW). In our protocol we consider a CTQW in the presence of a time -dependent transition defect. Our results show that the alternation between defects, that individually are detrimental to the wavepacket spreading, can paradoxically enhance overall wavepacket propagation. Our findings pave the way for the exploration of unconventional mechanisms that can potentially harness the adverse effects of defects to enhance quantum transport.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Detecting factorization effect in continuous-time quantum walks
    Jin-Hui Zhu
    Li-Hua Lu
    You-Quan Li
    EPJ Quantum Technology, 2021, 8
  • [2] Detecting factorization effect in continuous-time quantum walks
    Zhu, Jin-Hui
    Lu, Li-Hua
    Li, You-Quan
    EPJ QUANTUM TECHNOLOGY, 2021, 8 (01)
  • [3] Parrondo-like behavior in continuous-time random walks with memory
    Montero, Miquel
    PHYSICAL REVIEW E, 2011, 84 (05):
  • [4] From Continuous-Time Random Walks to Continuous-Time Quantum Walks: Disordered Networks
    Muelken, Oliver
    Blumen, Alexander
    NONLINEAR PHENOMENA IN COMPLEX SYSTEMS: FROM NANO TO MACRO SCALE, 2014, : 189 - 197
  • [5] CONTINUOUS-TIME QUANTUM WALKS AND TRAPPING
    Agliari, Elena
    Muelken, Oliver
    Blumen, Alexander
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (02): : 271 - 279
  • [6] Node Centrality for Continuous-Time Quantum Walks
    Rossi, Luca
    Torsello, Andrea
    Hancock, Edwin R.
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, 2014, 8621 : 103 - 112
  • [8] Continuous-time quantum walks with defects and disorder
    Izaac, J. A.
    Wang, J. B.
    Li, Z. J.
    PHYSICAL REVIEW A, 2013, 88 (04):
  • [9] Continuous-time quantum walks on the symmetric group
    Gerhardt, H
    Watrous, J
    APPROXIMATION, RANDOMIZATION, AND COMBINATORIAL OPTIMIZATION, 2003, 2764 : 290 - 301
  • [10] Zero transfer in continuous-time quantum walks
    A. Sett
    H. Pan
    P. E. Falloon
    J. B. Wang
    Quantum Information Processing, 2019, 18