Probabilistic state estimation in district heating grids using deep neural network

被引:8
|
作者
Yi, Gaowei [1 ]
Zhuang, Xinlin [2 ]
Li, Yan [1 ]
机构
[1] Ocean Univ China, Coll Engn, Sansha Rd 1299, Qingdao 266000, Shandong, Peoples R China
[2] East China Normal Univ, Sch Comp Sci & Technol, North Zhongshan Rd 3663, Shanghai 200062, Peoples R China
来源
关键词
Probabilistic state estimation; Deep learning; Fully-connected neural network; Convolutional neural network; Recurrent neural network; SYSTEMS;
D O I
10.1016/j.segan.2024.101353
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Probabilistic state estimation is critical for operating and controlling district heating grids efficiently. However, computational bottlenecks of traditional solvers limit the feasibility of uncertainty-aware Bayesian estimation. This paper proposes using deep neural networks (DNNs) to enable fast and accurate posterior estimation. Fullyconnected neural networks (FCNNs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs) are evaluated as candidate approximators of the physical model. Markov chain Monte Carlo sampling in the heat exchange space is leveraged to generate posterior samples. Experiments on a benchmark heating grid demonstrate FCNNs can efficiently learn the mapping from heat exchanges to network states. A FCNN trained on 20 training epochs after hyperparameter optimization provides the best approximation accuracy and uncertainty estimates, outperforming prior methods based on Deep Neural Networks. The results highlight the potential of data -driven deep learning models for probabilistic state estimation. The proposed framework could enable real -time uncertainty-aware control and decision-making for future intelligent district heating grids.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Crowd Density Estimation Based on Probabilistic Neural Network
    杨国庆
    崔荣一
    延边大学学报(自然科学版), 2010, (03) : 250 - 253
  • [42] Bayesian Deep Unfolding for State Estimation in Power Distribution Grids
    Rout, Biswajeet
    Natarajan, Balasubramaniam
    2024 IEEE KANSAS POWER AND ENERGY CONFERENCE, KPEC 2024, 2024,
  • [43] DOA Estimation Using Deep Neural Network with Angular Sliding Window
    Li, Yang
    Huang, Zanhu
    Liang, Can
    Zhang, Liang
    Wang, Yanhua
    Wang, Junfu
    Zhang, Yi
    Lv, Hongfen
    ELECTRONICS, 2023, 12 (04)
  • [44] NOISE ROBUST ESTIMATION OF THE VOICE SOURCE USING A DEEP NEURAL NETWORK
    Airaksinen, Manu
    Raitio, Tuomo
    Alku, Paavo
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 5137 - 5141
  • [45] Ejection Fraction estimation using deep semantic segmentation neural network
    Alam, Md Golam Rabiul
    Khan, Abde Musavvir
    Shejuty, Myesha Farid
    Zubayear, Syed Ibna
    Shariar, Md Nafis
    Altaf, Meteb
    Hassan, Mohammad Mehedi
    AlQahtani, Salman A.
    Alsanad, Ahmed
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (01): : 27 - 50
  • [46] Tropical Cyclone Intensity Estimation Using a Deep Convolutional Neural Network
    Pradhan, Ritesh
    Aygun, Ramazan S.
    Maskey, Manil
    Ramachandran, Rahul
    Cecil, Daniel J.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (02) : 692 - 702
  • [47] Channel estimation enhancement in vehicular communication using deep neural network
    Shukla, Devesh
    Prakash, Arun
    Tripathi, Rajeev
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2025, 50 (01):
  • [48] Ejection Fraction estimation using deep semantic segmentation neural network
    Md. Golam Rabiul Alam
    Abde Musavvir Khan
    Myesha Farid Shejuty
    Syed Ibna Zubayear
    Md. Nafis Shariar
    Meteb Altaf
    Mohammad Mehedi Hassan
    Salman A. AlQahtani
    Ahmed Alsanad
    The Journal of Supercomputing, 2023, 79 : 27 - 50
  • [49] Neural network-based three-phase state estimation for unobservable low voltage grids
    Bragantini, Andrea
    Sumper, Andreas
    Gadelha, Vinicius
    Galceran-Arellano, Samuel
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2025, 167
  • [50] State-of-Charge Estimation of Lithium-Ion Battery for Electric Vehicles Using Deep Neural Network
    Premkumar, M.
    Sowmya, R.
    Sridhar, S.
    Kumar, C.
    Abbas, Mohamed
    Alqahtani, Malak S.
    Nisar, Kottakkaran Sooppy
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (03): : 6289 - 6306