Probabilistic state estimation in district heating grids using deep neural network

被引:8
|
作者
Yi, Gaowei [1 ]
Zhuang, Xinlin [2 ]
Li, Yan [1 ]
机构
[1] Ocean Univ China, Coll Engn, Sansha Rd 1299, Qingdao 266000, Shandong, Peoples R China
[2] East China Normal Univ, Sch Comp Sci & Technol, North Zhongshan Rd 3663, Shanghai 200062, Peoples R China
来源
关键词
Probabilistic state estimation; Deep learning; Fully-connected neural network; Convolutional neural network; Recurrent neural network; SYSTEMS;
D O I
10.1016/j.segan.2024.101353
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Probabilistic state estimation is critical for operating and controlling district heating grids efficiently. However, computational bottlenecks of traditional solvers limit the feasibility of uncertainty-aware Bayesian estimation. This paper proposes using deep neural networks (DNNs) to enable fast and accurate posterior estimation. Fullyconnected neural networks (FCNNs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs) are evaluated as candidate approximators of the physical model. Markov chain Monte Carlo sampling in the heat exchange space is leveraged to generate posterior samples. Experiments on a benchmark heating grid demonstrate FCNNs can efficiently learn the mapping from heat exchanges to network states. A FCNN trained on 20 training epochs after hyperparameter optimization provides the best approximation accuracy and uncertainty estimates, outperforming prior methods based on Deep Neural Networks. The results highlight the potential of data -driven deep learning models for probabilistic state estimation. The proposed framework could enable real -time uncertainty-aware control and decision-making for future intelligent district heating grids.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] End-to-End Learning of Semantic Grid Estimation Deep Neural Network with Occupancy Grids
    Erkent, Ozgur
    Wolf, Christian
    Laugier, Christian
    UNMANNED SYSTEMS, 2019, 7 (03) : 171 - 181
  • [22] Circuit health state estimation via an integrated deep neural network
    Xiang M.
    He Y.
    Zhang H.
    Zhang C.
    Zeng Z.
    An B.
    International Journal of Circuits, Systems and Signal Processing, 2020, 14 : 661 - 668
  • [23] Fast State Estimation for Power System Based on Deep Neural Network
    Yu W.
    Zhang X.
    Wei Z.
    Sun G.
    Zang H.
    Yang Y.
    Han Y.
    Dianwang Jishu/Power System Technology, 2021, 45 (07): : 2551 - 2559
  • [24] A Deep Neural Network Approach for Online Topology Identification in State Estimation
    Gotti, Davide
    Amaris, Hortensia
    Ledesma, Pablo
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2021, 36 (06) : 5824 - 5833
  • [25] Distribution network distributed state estimation method based on an integrated deep neural network
    Zhang W.
    Fan Y.
    Hou J.
    Song Y.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2024, 52 (03): : 128 - 140
  • [26] Joint Torque Estimation Using sEMG and Deep Neural Network
    Harin Kim
    Hyeonjun Park
    Sangheum Lee
    Donghan Kim
    Journal of Electrical Engineering & Technology, 2020, 15 : 2287 - 2298
  • [27] Parameter Estimation for Dynamical Systems Using a Deep Neural Network
    Dufera, Tamirat Temesgen
    Seboka, Yadeta Chimdessa
    Fresneda Portillo, Carlos
    APPLIED COMPUTATIONAL INTELLIGENCE AND SOFT COMPUTING, 2022, 2022
  • [28] BLIND ESTIMATION OF REVERBERATION TIME USING DEEP NEURAL NETWORK
    Lee, Myungin
    Chang, Joon-Hyuk
    PROCEEDINGS OF 2016 5TH IEEE INTERNATIONAL CONFERENCE ON NETWORK INFRASTRUCTURE AND DIGITAL CONTENT (IEEE IC-NIDC 2016), 2016, : 308 - 311
  • [29] Joint Torque Estimation Using sEMG and Deep Neural Network
    Kim, Harin
    Park, Hyeonjun
    Lee, Sangheum
    Kim, Donghan
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2020, 15 (05) : 2287 - 2298
  • [30] Estimation of steady-state temperature field in Multichip Modules using deep convolutional neural network
    Hua, Yue
    Wang, Zhi-Qiao
    Yuan, Xin-Yi
    Li, Yu Bai
    Wu, Wei-Tao
    Aubry, Nadine
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2023, 40