Modeling and prediction of children’s growth data via functional principal component analysis

被引:0
|
作者
HU YuHE XuMingTAO Jian SHI NingZhong Key Laboratory for Applied Statistics of MOESchool of Mathematics and StatisticsNortheast Normal UniversityChangchun China Department of StatisticsUniversity of Illinois at UrbanaChampaign South Wright StreetChampaignIL USA [1 ,2 ,1 ,1 ,1 ,130024 ,2 ,725 ,61820 ]
机构
关键词
D O I
暂无
中图分类号
O213 [应用统计数学];
学科分类号
摘要
We use the functional principal component analysis(FPCA) to model and predict the weight growth in children.In particular,we examine how the approach can help discern growth patterns of underweight children relative to their normal counterparts,and whether a commonly used transformation to normality plays any constructive roles in a predictive model based on the FPCA.Our work supplements the conditional growth charts developed by Wei and He(2006) by constructing a predictive growth model based on a small number of principal components scores on individual's past.
引用
收藏
页码:1342 / 1350
页数:9
相关论文
共 50 条
  • [2] Modeling and prediction of children's growth data via functional principal component analysis
    Hu Yu
    He XuMing
    Tao Jian
    Shi NingZhong
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (06): : 1342 - 1350
  • [3] Modeling and prediction of children’s growth data via functional principal component analysis
    Yu Hu
    XuMing He
    Jian Tao
    NingZhong Shi
    Science in China Series A: Mathematics, 2009, 52 : 1342 - 1350
  • [4] Robust principal component analysis for functional data
    Peña, D
    Prieto, J
    TEST, 1999, 8 (01) : 56 - 60
  • [5] Principal component analysis for Hilbertian functional data
    Kim, Dongwoo
    Lee, Young Kyung
    Park, Byeong U.
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2020, 27 (01) : 149 - 161
  • [6] Functional principal component analysis of fMRI data
    Viviani, R
    Grön, G
    Spitzer, M
    HUMAN BRAIN MAPPING, 2005, 24 (02) : 109 - 129
  • [7] Robust principal component analysis for functional data
    N. Locantore
    J. S. Marron
    D. G. Simpson
    N. Tripoli
    J. T. Zhang
    K. L. Cohen
    Graciela Boente
    Ricardo Fraiman
    Babette Brumback
    Christophe Croux
    Jianqing Fan
    Alois Kneip
    John I. Marden
    Daniel Peña
    Javier Prieto
    Jim O. Ramsay
    Mariano J. Valderrama
    Ana M. Aguilera
    N. Locantore
    J. S. Marron
    D. G. Simpson
    N. Tripoli
    J. T. Zhang
    K. L. Cohen
    Test, 1999, 8 (1) : 1 - 73
  • [8] Modeling environmental data by functional principal component logistic regression
    Escabias, M
    Aguilera, AM
    Valderrama, MJ
    ENVIRONMETRICS, 2005, 16 (01) : 95 - 107
  • [9] Principal component analysis of infinite variance functional data
    Kokoszka, Piotr
    Kulik, Rafal
    JOURNAL OF MULTIVARIATE ANALYSIS, 2023, 193
  • [10] Functional principal component analysis of spatially correlated data
    Chong Liu
    Surajit Ray
    Giles Hooker
    Statistics and Computing, 2017, 27 : 1639 - 1654