<正> Let A and R be commutative rings. and m and n be integers≥3. It is proved that,if A: Stm(A)→St_n(R)is an isomorphism, then m=n. When n≥4, we have: (1) Everyisomorphism A: St_n(A)→St_n(R) induces an isomorphism λ:E_n(A)→E_n(R), and A is uniquelydetermined by λ; (2)If St_n(A)≌St_n(R)then K2.n(A)≌K(2.n)(R); (3)Every isomorphism E_n(A)→E_n(R)can be lifted to an isomorphism St_n(A)→St_n(R);(4) St_n(A)≌St_n(R)if and only ifA≌R. For the case n=3, if St3(A) and St3 (R) are respectively central extensions of E3(A)andE3 (R), then the above (1) and (2) hold.
机构:
Univ London Queen Mary & Westfield Coll, Sch Math Sci, London E1 4NS, EnglandUniv London Queen Mary & Westfield Coll, Sch Math Sci, London E1 4NS, England