TRIANGLE CONDITION FOR ORIENTED PERCOLATION IN HIGH DIMENSIONS

被引:44
|
作者
NGUYEN, BG [1 ]
YANG, WS [1 ]
机构
[1] TEMPLE UNIV,DEPT MATH,PHILADELPHIA,PA 19122
来源
ANNALS OF PROBABILITY | 1993年 / 21卷 / 04期
关键词
LACE EXPANSION; TRIANGLE CONDITION; INFRARED BOUND; ORIENTED PERCOLATION; MEAN-FIELD BEHAVIOR;
D O I
10.1214/aop/1176989001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we apply the Brydges-Spencer lace expansion and the Hara-Slade analysis to obtain the triangle condition for the nearest-neighbor oriented bond percolation in high dimensions and for the spread-out oriented bond percolation in Z(d) X Z, d greater than or equal to 5. Furthermore, we also establish the infrared bound in the subcritical region and the mean-field behavior for these models.
引用
收藏
页码:1809 / 1844
页数:36
相关论文
共 50 条
  • [41] ORIENTED PERCOLATION IN DIMENSIONS D-GREATER-THAN-OR-EQUAL-TO-4 - BOUNDS AND ASYMPTOTIC FORMULAS
    COX, JT
    DURRETT, R
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1983, 93 (JAN) : 151 - 162
  • [42] The dimensions of the triangle of Koch in children
    Goldberg, CS
    Caplan, MJ
    Heidelberger, KP
    Dick, M
    AMERICAN JOURNAL OF CARDIOLOGY, 1999, 83 (01): : 117 - +
  • [43] DIMENSIONS OF THE TRIANGLE OF KOCH IN HUMANS
    MCGUIRE, MA
    JOHNSON, DC
    ROBOTIN, M
    RICHARDS, DA
    UTHER, JB
    ROSS, DL
    AMERICAN JOURNAL OF CARDIOLOGY, 1992, 70 (07): : 829 - 830
  • [44] Calculation of percolation thresholds in high dimensions for FCC, BCC and diamond lattices
    Van der Marck, SC
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1998, 9 (04): : 529 - 540
  • [45] Universal finite-size scaling for percolation theory in high dimensions
    Kenna, Ralph
    Berche, Bertrand
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (23)
  • [46] Frozen percolation in two dimensions
    Kiss, Demeter
    PROBABILITY THEORY AND RELATED FIELDS, 2015, 163 (3-4) : 713 - 768
  • [47] Cylinders' percolation in three dimensions
    Hilario, M. R.
    Sidoravicius, V.
    Teixeira, A.
    PROBABILITY THEORY AND RELATED FIELDS, 2015, 163 (3-4) : 613 - 642
  • [48] Frozen percolation in two dimensions
    Demeter Kiss
    Probability Theory and Related Fields, 2015, 163 : 713 - 768
  • [49] Dependent percolation in two dimensions
    Balister, PN
    Bollobás, B
    Stacey, AM
    PROBABILITY THEORY AND RELATED FIELDS, 2000, 117 (04) : 495 - 513
  • [50] Agglomerative percolation in two dimensions
    Christensen, C.
    Bizhani, G.
    Son, S. -W.
    Paczuski, M.
    Grassberger, P.
    EPL, 2012, 97 (01)