TRIANGLE CONDITION FOR ORIENTED PERCOLATION IN HIGH DIMENSIONS

被引:44
|
作者
NGUYEN, BG [1 ]
YANG, WS [1 ]
机构
[1] TEMPLE UNIV,DEPT MATH,PHILADELPHIA,PA 19122
来源
ANNALS OF PROBABILITY | 1993年 / 21卷 / 04期
关键词
LACE EXPANSION; TRIANGLE CONDITION; INFRARED BOUND; ORIENTED PERCOLATION; MEAN-FIELD BEHAVIOR;
D O I
10.1214/aop/1176989001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we apply the Brydges-Spencer lace expansion and the Hara-Slade analysis to obtain the triangle condition for the nearest-neighbor oriented bond percolation in high dimensions and for the spread-out oriented bond percolation in Z(d) X Z, d greater than or equal to 5. Furthermore, we also establish the infrared bound in the subcritical region and the mean-field behavior for these models.
引用
收藏
页码:1809 / 1844
页数:36
相关论文
共 50 条
  • [21] Reconsideration of continuum percolation of isotropically oriented sticks in three dimensions
    Neda, Z.
    Florian, R.
    Brechet, Y.
    Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1999, 59 (2-3): : 3717 - 3719
  • [22] On the Derivation of Mean-Field Percolation Critical Exponents from the Triangle Condition
    Tom Hutchcroft
    Journal of Statistical Physics, 2022, 189
  • [23] On the Derivation of Mean-Field Percolation Critical Exponents from the Triangle Condition
    Hutchcroft, Tom
    JOURNAL OF STATISTICAL PHYSICS, 2022, 189 (01)
  • [24] Triangle Percolation on the Grid
    Araujo, Igor
    Frederickson, Bryce
    Krueger, Robert A.
    Lidicky, Bernard
    Mcallister, Tyrrell B.
    Pfender, Florian
    Spiro, Sam
    Stucky, Eric Nathan
    DISCRETE & COMPUTATIONAL GEOMETRY, 2025, 73 (02) : 569 - 593
  • [25] UPPER-BOUNDS FOR THE CRITICAL PROBABILITY OF ORIENTED PERCOLATION IN 2 DIMENSIONS
    BALISTER, P
    BOLLOBAS, B
    STACEY, A
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1993, 440 (1908): : 201 - 220
  • [26] Restricted Percolation Critical Exponents in High Dimensions
    Chatterjee, Shirshendu
    Hanson, Jack
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2020, 73 (11) : 2370 - 2429
  • [27] A triangle test for equality of distribution functions in high dimensions
    Liu, Zhenyu
    Modarres, Reza
    JOURNAL OF NONPARAMETRIC STATISTICS, 2011, 23 (03) : 605 - 615
  • [28] ABSENCE OF A STATIONARY DISTRIBUTION FOR THE EDGE PROCESS OF SUBCRITICAL ORIENTED PERCOLATION IN 2 DIMENSIONS
    SCHONMANN, RH
    ANNALS OF PROBABILITY, 1987, 15 (03): : 1146 - 1147
  • [29] Improved Lower Bounds for the Critical Probability of Oriented Bond Percolation in Two Dimensions
    Vladimir Belitsky
    Thomas Logan Ritchie
    Journal of Statistical Physics, 2006, 122 : 279 - 302
  • [30] Improved lower bounds for the critical probability of oriented bond percolation in two dimensions
    Belitsky, V
    Ritchie, TL
    JOURNAL OF STATISTICAL PHYSICS, 2006, 122 (02) : 279 - 302