On the Hermite interpolation polynomial

被引:0
|
作者
Pop, Ovidiu T. [1 ]
Barbosu, Dan [2 ]
机构
[1] Natl Coll Mihai Eminescu, Mihai Eminescu St 5, Satu Mare 440014, Romania
[2] North Univ Baia Mare, Dept Math & Comp Sci, Baia Mare 430122, Romania
关键词
Hermite interpolation polynomial; divided difference with multiple knots; uniform convergence;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Newton form for the Hermite interpolation polynomial using the divided differences with multiple knots is proved. Using this representation, sufficient conditions for the convergence of the sequence of Hermite interpolation polynomials are established. One extends this way a result obtained by M. Ivan, regarding to sufficient conditions for the uniform convergence of the sequence of Lagrange polynomials.
引用
收藏
页码:104 / 109
页数:6
相关论文
共 50 条
  • [41] The Discrete Approximation Problem for a Special Case of Hermite-Type Polynomial Interpolation
    GONG Yihe
    JIANG Xue
    ZHANG Shugong
    Journal of Systems Science & Complexity, 2022, 35 (05) : 2004 - 2015
  • [42] The Discrete Approximation Problem for a Special Case of Hermite-Type Polynomial Interpolation
    Gong Yihe
    Jiang Xue
    Zhang Shugong
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2022, 35 (05) : 2004 - 2015
  • [43] On the Hermite interpolation
    Xing-hua Wang
    Science in China Series A: Mathematics, 2007, 50 : 1651 - 1660
  • [44] ASYMPTOTIC-EXPANSION FOR THE APPROXIMATION OF THE LIPSCHITZ FUNCTION BY THE HERMITE-FEJER INTERPOLATION POLYNOMIAL
    JIANG, TZ
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1994, 54 (03) : 285 - 296
  • [45] De Boor–Fix functionals and Hermite boundary conditions in the polynomial spline interpolation problem
    Yuriy S. Volkov
    European Journal of Mathematics, 2021, 7 : 396 - 403
  • [46] MULTIDIMENSIONAL HERMITE INTERPOLATION
    Durakov, M. E.
    Leinartas, E. D.
    Tsikh, A. K.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2023, 20 (02): : 700 - 710
  • [47] On a Hermite interpolation on the sphere
    Zhang, Ming
    Liang, Xue-Zhang
    APPLIED NUMERICAL MATHEMATICS, 2011, 61 (05) : 666 - 674
  • [48] A note on Hermite interpolation
    Jakimovski, A.
    Leviatan, D.
    JAEN JOURNAL ON APPROXIMATION, 2018, 10 (01): : 147 - 153
  • [49] On Hermite interpolation in Rd
    Shekhtman, B
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2004, 18 : 65 - 72
  • [50] GEOMETRIC HERMITE INTERPOLATION
    HOLLIG, K
    KOCH, J
    COMPUTER AIDED GEOMETRIC DESIGN, 1995, 12 (06) : 567 - 580