On the Hermite interpolation polynomial

被引:0
|
作者
Pop, Ovidiu T. [1 ]
Barbosu, Dan [2 ]
机构
[1] Natl Coll Mihai Eminescu, Mihai Eminescu St 5, Satu Mare 440014, Romania
[2] North Univ Baia Mare, Dept Math & Comp Sci, Baia Mare 430122, Romania
关键词
Hermite interpolation polynomial; divided difference with multiple knots; uniform convergence;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Newton form for the Hermite interpolation polynomial using the divided differences with multiple knots is proved. Using this representation, sufficient conditions for the convergence of the sequence of Hermite interpolation polynomials are established. One extends this way a result obtained by M. Ivan, regarding to sufficient conditions for the uniform convergence of the sequence of Lagrange polynomials.
引用
收藏
页码:104 / 109
页数:6
相关论文
共 50 条
  • [31] On hermite interpolation
    Shi, YG
    JOURNAL OF APPROXIMATION THEORY, 2000, 105 (01) : 49 - 86
  • [32] The Discrete Approximation Problem for a Special Case of Hermite-Type Polynomial Interpolation
    Yihe Gong
    Xue Jiang
    Shugong Zhang
    Journal of Systems Science and Complexity, 2022, 35 : 2004 - 2015
  • [33] ON THE RAPIDITY OF CONVERGENCE OF HERMITE-FEJER INTERPOLATION BASED ON THE ROOTS OF LEGENDRE POLYNOMIAL
    MISRA, N
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1982, 39 (1-3): : 149 - 154
  • [34] Interpolation of fuzzy data by Hermite polynomial (vol 82, pg 1541, 2005)
    Sadeghi, Goghary H.
    Abbasbandy, S.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2007, 84 (07) : 1113 - 1113
  • [35] On the hermite interpolation
    Mazure, ML
    COMPTES RENDUS MATHEMATIQUE, 2005, 340 (02) : 177 - 180
  • [36] On the Hermite interpolation
    Xing-hua WANG Department of Mathematics
    ScienceinChina(SeriesA:Mathematics), 2007, (11) : 1651 - 1660
  • [37] On the Hermite interpolation
    Wang, Xing-hua
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (11): : 1651 - 1660
  • [38] Polynomial smooth epsilon-support vector regression based on Hermite interpolation
    Ren, Bin
    Cheng, Lianglun
    Journal of Computational Information Systems, 2010, 6 (13): : 4523 - 4532
  • [39] Numerical Gradient Schemes for Heat Equations Based on the Collocation Polynomial and Hermite Interpolation
    Li, Hou-Biao
    Song, Ming-Yan
    Zhong, Er-Jie
    Gu, Xian-Ming
    MATHEMATICS, 2019, 7 (01):
  • [40] The Discrete Approximation Problem for a Special Case of Hermite-Type Polynomial Interpolation
    College of Science, Northeast Electric Power University, Jilin
    132000, China
    不详
    110034, China
    不详
    130012, China
    J. Syst. Sci. Complex., 2022, 5 (2004-2015):