ACCELERATIONS FOR A VARIETY OF GLOBAL OPTIMIZATION METHODS

被引:16
|
作者
BARITOMPA, W [1 ]
机构
[1] UNIV CANTERBURY,DEPT MATH,CHRISTCHURCH 1,NEW ZEALAND
关键词
MULTIDIMENSIONAL BISECTION; DETERMINISTIC; GLOBAL OPTIMIZATION; MATHEMATICAL PROGRAMMING; SEARCH;
D O I
10.1007/BF01096533
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Optimization methods for a given class are easily modified to utilize additional information and work faster on a more restricted class. In particular algorithms that use only the Lipschitz constant (e.g. Mladineo, Piyavskii, Shubert and Wood) can be modified to use second derivative bounds or gradient calculations. The algorithm of Breiman & Cutler can be modified to use Lipschitz bounds. Test cases illustrating accelerations to various algorithms are provided.
引用
收藏
页码:37 / 45
页数:9
相关论文
共 50 条
  • [41] On duality bound methods for nonconvex global optimization
    Tuy, Hoang
    JOURNAL OF GLOBAL OPTIMIZATION, 2007, 37 (02) : 321 - 323
  • [42] Methods for Full Global Optimization of Klystron Parameters
    Baikov, A. Yu
    Baikova, O. A.
    2019 SYSTEMS OF SIGNAL SYNCHRONIZATION, GENERATING AND PROCESSING IN TELECOMMUNICATIONS (SYNCHROINFO), 2019,
  • [43] On the Global Convergence of Particle Swarm Optimization Methods
    Hui Huang
    Jinniao Qiu
    Konstantin Riedl
    Applied Mathematics & Optimization, 2023, 88
  • [44] Imbedding and cutting methods for global optimization and their applications
    Bulatov, Valerian
    OPTIMIZATION, 2009, 58 (07) : 763 - 770
  • [45] GLOBAL OPTIMIZATION METHODS FOR ENGINEERING APPLICATIONS - A REVIEW
    ARORA, JS
    ELWAKEIL, OA
    CHAHANDE, AI
    HSIEH, CC
    STRUCTURAL OPTIMIZATION, 1995, 9 (3-4): : 137 - 159
  • [46] New interval methods for constrained global optimization
    M.Cs. Markót
    J. Fernández
    L.G. Casado
    T. Csendes
    Mathematical Programming, 2006, 106 : 287 - 318
  • [47] The convergence speed of interval methods for global optimization
    Csallner, AE
    Csendes, T
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 31 (4-5) : 173 - 178
  • [48] Global Interval Methods for Local Nonsmooth Optimization
    Christiane Görges
    Helmut Ratschek
    Journal of Global Optimization, 1999, 14 : 157 - 179
  • [49] On duality bound methods for nonconvex global optimization
    Hoang Tuy
    Journal of Global Optimization, 2007, 37 : 321 - 323
  • [50] Lipschitz global optimization methods in control problems
    Kvasov, D. E.
    Sergeyev, Ya. D.
    AUTOMATION AND REMOTE CONTROL, 2013, 74 (09) : 1435 - 1448