ACCELERATIONS FOR A VARIETY OF GLOBAL OPTIMIZATION METHODS

被引:16
|
作者
BARITOMPA, W [1 ]
机构
[1] UNIV CANTERBURY,DEPT MATH,CHRISTCHURCH 1,NEW ZEALAND
关键词
MULTIDIMENSIONAL BISECTION; DETERMINISTIC; GLOBAL OPTIMIZATION; MATHEMATICAL PROGRAMMING; SEARCH;
D O I
10.1007/BF01096533
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Optimization methods for a given class are easily modified to utilize additional information and work faster on a more restricted class. In particular algorithms that use only the Lipschitz constant (e.g. Mladineo, Piyavskii, Shubert and Wood) can be modified to use second derivative bounds or gradient calculations. The algorithm of Breiman & Cutler can be modified to use Lipschitz bounds. Test cases illustrating accelerations to various algorithms are provided.
引用
收藏
页码:37 / 45
页数:9
相关论文
共 50 条
  • [31] Initialization Methods for Large Scale Global Optimization
    Kazimipour, Borhan
    Li, Xiaodong
    Qin, A. K.
    2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2013, : 2750 - 2757
  • [32] GLOBAL OPTIMIZATION METHODS FOR MULTIMODAL INVERSE PROBLEMS
    SCALES, JA
    SMITH, ML
    FISCHER, TL
    JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 103 (02) : 258 - 268
  • [33] A NOTE ON STOCHASTIC SEARCH METHODS FOR GLOBAL OPTIMIZATION
    KENNEDY, DP
    ADVANCES IN APPLIED PROBABILITY, 1988, 20 (02) : 476 - 478
  • [34] Global interval methods for local nonsmooth optimization
    Görges, C
    Ratschek, H
    JOURNAL OF GLOBAL OPTIMIZATION, 1999, 14 (02) : 157 - 179
  • [35] CUSTOMIZING METHODS FOR GLOBAL OPTIMIZATION - A GEOMETRIC VIEWPOINT
    BARITOMPA, W
    JOURNAL OF GLOBAL OPTIMIZATION, 1993, 3 (02) : 193 - 212
  • [36] On Generalizing Lipschitz Global Methods for Multiobjective Optimization
    Lovison, Alberto
    Hartikainen, Markus E.
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PT II, 2015, 9019 : 264 - 278
  • [37] Global Optimization Ensemble Model for Classification Methods
    Anwar, Hina
    Qamar, Usman
    Qureshi, Abdul Wahab Muzaffar
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [38] Lipschitz global optimization methods in control problems
    D. E. Kvasov
    Ya. D. Sergeyev
    Automation and Remote Control, 2013, 74 : 1435 - 1448
  • [39] Dynamic search trajectory methods for global optimization
    Stamatios-Aggelos N. Alexandropoulos
    Panos M. Pardalos
    Michael N. Vrahatis
    Annals of Mathematics and Artificial Intelligence, 2020, 88 : 3 - 37
  • [40] On the Global Convergence of Particle Swarm Optimization Methods
    Huang, Hui
    Qiu, Jinniao
    Riedl, Konstantin
    APPLIED MATHEMATICS AND OPTIMIZATION, 2023, 88 (02):