NEWTON METHOD FOR MULTIPLE ROOTS

被引:15
|
作者
GILBERT, WJ
机构
[1] University of Waterloo, Waterloo
关键词
D O I
10.1016/0097-8493(94)90097-3
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We investigate the basins of attraction in the complex plane of Newton's method for finding multiple roots and illustrate what happens as two simple roots coalesce to form a double root.
引用
收藏
页码:227 / 229
页数:3
相关论文
共 50 条
  • [31] On the local convergence of Newton's method to a multiple root
    Yamagishi, Y
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2003, 55 (04) : 897 - 908
  • [32] The Julia set of Newton's method for multiple root
    Wang, XY
    Liu, W
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 172 (01) : 101 - 110
  • [33] NEWTON'S METHOD FOR COMPUTING THE FIFTH ROOTS OF p-ADIC NUMBERS
    Kim, Y. H.
    Kim, H. M.
    Choi, J.
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2016, 20 (02) : 353 - 362
  • [34] P-Adic Qth Roots via Newton-Raphson Method
    Ignacio, Paul Samuel
    Addawe, Joel
    Nable, Job
    THAI JOURNAL OF MATHEMATICS, 2016, 14 (02): : 417 - 429
  • [35] From third to fourth order variant of Newton's method for simple roots
    Basu, Dhiman
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 202 (02) : 886 - 892
  • [36] Modified Jarratt method for computing multiple roots
    Sharma, Janak Raj
    Sharma, Rajni
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (02) : 878 - 881
  • [37] The Newton and Halley methods for complex roots
    Yau, LL
    Ben-Israel, A
    AMERICAN MATHEMATICAL MONTHLY, 1998, 105 (09): : 806 - 818
  • [38] IMPROVED NEWTON ITERATION FOR INTEGRAL ROOTS
    KING, RF
    MATHEMATICS OF COMPUTATION, 1971, 25 (114) : 299 - &
  • [39] Symmetries of the Julia sets of Newton's method for multiple root
    Yang, Weifeng
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (06) : 2490 - 2494
  • [40] Computing multiple zeros by using a parameter in Newton–Secant method
    Ferrara M.
    Sharifi S.
    Salimi M.
    SeMA Journal, 2017, 74 (4) : 361 - 369