NEWTON METHOD FOR MULTIPLE ROOTS

被引:15
|
作者
GILBERT, WJ
机构
[1] University of Waterloo, Waterloo
关键词
D O I
10.1016/0097-8493(94)90097-3
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We investigate the basins of attraction in the complex plane of Newton's method for finding multiple roots and illustrate what happens as two simple roots coalesce to form a double root.
引用
收藏
页码:227 / 229
页数:3
相关论文
共 50 条
  • [21] Influence of the multiplicity of the roots on the basins of attraction of Newton's method
    Gutierrez, Jose M.
    Hernandez-Paricio, Luis J.
    Maranon-Grandes, Miguel
    Teresa Rivas-Rodriguez, M.
    NUMERICAL ALGORITHMS, 2014, 66 (03) : 431 - 455
  • [22] EXPANDED CONVERGENCE DOMAINS FOR NEWTON METHOD AT NEARLY SINGULAR ROOTS
    DECKER, DW
    KELLEY, CT
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1985, 6 (04): : 951 - 966
  • [23] Influence of the multiplicity of the roots on the basins of attraction of Newton’s method
    José M. Gutiérrez
    Luis J. Hernández-Paricio
    Miguel Marañón-Grandes
    M. Teresa Rivas-Rodríguez
    Numerical Algorithms, 2014, 66 : 431 - 455
  • [24] REGIONS OF ATTRACTION WHEN COMPUTING ROOTS OF POLYNOMIALS WITH NEWTON-METHOD
    BRAESS, D
    NUMERISCHE MATHEMATIK, 1977, 29 (01) : 123 - 132
  • [25] How to find all roots of complex polynomials by Newton’s method
    John Hubbard
    Dierk Schleicher
    Scott Sutherland
    Inventiones mathematicae, 2001, 146 : 1 - 33
  • [26] A new Newton-like iterative method for roots of analytic functions
    Otolorin, Olayiwola
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2005, 36 (05) : 539 - 546
  • [27] Method for finding multiple roots of polynomials
    Yan, CD
    Chieng, WH
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 51 (3-4) : 605 - 620
  • [28] How to find all roots of complex polynomials by Newton's method
    Hubbard, J
    Schleicher, D
    Sutherland, S
    INVENTIONES MATHEMATICAE, 2001, 146 (01) : 1 - 33
  • [29] Family of Cubically Convergent Schemes Using Inverse Newton Function for Multiple Roots
    Basu, Dhiman
    INTERNATIONAL JOURNAL FOR COMPUTATIONAL METHODS IN ENGINEERING SCIENCE & MECHANICS, 2008, 9 (03): : 189 - 200
  • [30] A stable class of modified Newton-like methods for multiple roots and their dynamics
    Kansal, Munish
    Cordero, Alicia
    Torregrosa, Juan R.
    Bhalla, Sonia
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2020, 21 (06) : 603 - 621