On the choice of parameters in the residual method for optimal correction of improper problems of convex optimization

被引:0
|
作者
Skarin, V. D. [1 ,2 ]
机构
[1] Russian Acad Sci, Ural Branch, Inst Math & Mech, Phys Mat, Ekaterinburg, Russia
[2] Ural Fed Univ, Ekaterinburg, Russia
来源
关键词
convex programming; improper problem; optimal correction; residual method; penalty function methods;
D O I
10.21538/0134-4889-2016-22-3-231-243
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the correction of improper problems of convex programming, the residual method is used, which is the standard regularization procedure for ill-defined optimization models. We propose new iterative implementations of the residual method, in which the constraints of the problem are included by means of penalty functions. New convergence conditions are established for algorithmic schemes, and bounds are found for the approximation error.
引用
收藏
页码:231 / 243
页数:13
相关论文
共 50 条
  • [41] On the choice of parameters for the weighting method in vector optimization
    Drummond, L. M. Grana
    Maculan, N.
    Svaiter, B. F.
    MATHEMATICAL PROGRAMMING, 2008, 111 (1-2) : 201 - 216
  • [42] On the choice of parameters for the weighting method in vector optimization
    Drummond, L. M. Grana
    Maculan, N.
    Svaiter, B. F.
    MATHEMATICAL PROGRAMMING, 2008, 112 (01) : 273 - 273
  • [43] On the choice of parameters for the weighting method in vector optimization
    L. M. Grañax Drummond
    N. Maculan
    B. F. Svaiter
    Mathematical Programming, 2008, 111 : 201 - 216
  • [44] On the choice of parameters for the weighting method in vector optimization
    L. M. Graña Drummond
    N. Maculan
    B. F. Svaiter
    Mathematical Programming, 2008, 112 : 273 - 273
  • [45] Stochastic intermediate gradient method for convex optimization problems
    Gasnikov, A. V.
    Dvurechensky, P. E.
    DOKLADY MATHEMATICS, 2016, 93 (02) : 148 - 151
  • [46] An Approximate Penalty Method with Descent for Convex Optimization Problems
    I. V. Konnov
    Russian Mathematics, 2019, 63 : 41 - 55
  • [47] Stochastic intermediate gradient method for convex optimization problems
    A. V. Gasnikov
    P. E. Dvurechensky
    Doklady Mathematics, 2016, 93 : 148 - 151
  • [48] On the Distributed Method of Multipliers for Separable Convex Optimization Problems
    Sherson, Thomas
    Heusdens, Richard
    Kleijn, W. Bastiaan
    IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2019, 5 (03): : 495 - 510
  • [49] An Approximate Penalty Method with Descent for Convex Optimization Problems
    Konnov, I. V.
    RUSSIAN MATHEMATICS, 2019, 63 (07) : 41 - 55
  • [50] The method of quasi-solutions based on barrier functions in the analysis of improper convex programming problems
    Skarin, V. D.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2022, 28 (04): : 201 - 215