On the choice of parameters in the residual method for optimal correction of improper problems of convex optimization

被引:0
|
作者
Skarin, V. D. [1 ,2 ]
机构
[1] Russian Acad Sci, Ural Branch, Inst Math & Mech, Phys Mat, Ekaterinburg, Russia
[2] Ural Fed Univ, Ekaterinburg, Russia
来源
关键词
convex programming; improper problem; optimal correction; residual method; penalty function methods;
D O I
10.21538/0134-4889-2016-22-3-231-243
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the correction of improper problems of convex programming, the residual method is used, which is the standard regularization procedure for ill-defined optimization models. We propose new iterative implementations of the residual method, in which the constraints of the problem are included by means of penalty functions. New convergence conditions are established for algorithmic schemes, and bounds are found for the approximation error.
引用
收藏
页码:231 / 243
页数:13
相关论文
共 50 条
  • [21] A new subspace correction method for nonlinear unconstrained convex optimization problems
    Chen, Rong-liang
    Zeng, Jin-ping
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2012, 28 (04): : 745 - 756
  • [22] A New Subspace Correction Method for Nonlinear Unconstrained Convex Optimization Problems
    Rongliang CHEN
    Jinping ZENG
    Acta Mathematicae Applicatae Sinica(English Series), 2012, 28 (04) : 745 - 756
  • [23] A new subspace correction method for nonlinear unconstrained convex optimization problems
    Rong-liang Chen
    Jin-ping Zeng
    Acta Mathematicae Applicatae Sinica, English Series, 2012, 28 : 745 - 756
  • [24] A New Subspace Correction Method for Nonlinear Unconstrained Convex Optimization Problems
    Rong-liang CHEN
    Jin-ping ZENG
    Acta Mathematicae Applicatae Sinica, 2012, (04) : 745 - 756
  • [25] On the optimal correction of contradictory problems of convex programming
    Skarin, V. D.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2013, 19 (02): : 267 - 274
  • [26] Baseline correction method of acceleration time history based on residual displacement and convex optimization
    He, Zhizhou
    Zhang, Yanjie
    Wang, Haishen
    Pan, Peng
    SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2023, 165
  • [27] The method of penalty functions and regularization in the analysis of improper convex programming problems
    Skarin, Vladimir Dmitrievich
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2018, 24 (03): : 187 - 199
  • [28] Successive Chebyshev pseudospectral convex optimization method for nonlinear optimal control problems
    Li, Yang
    Chen, Wanchun
    Yang, Liang
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2022, 32 (01) : 326 - 343
  • [29] Optimal choice of parameters for particle swarm optimization
    Zhang L.-P.
    Yu H.-J.
    Hu S.-X.
    Journal of Zhejiang University-SCIENCE A, 2005, 6 (6): : 528 - 534
  • [30] Optimal choice of parameters for particle swarm optimization
    张丽平
    俞欢军
    胡上序
    Journal of Zhejiang University Science A(Science in Engineering), 2005, (06) : 528 - 534