A GENERALIZATION OF A LOCALIZATION PROPERTY OF BESOV SPACES

被引:1
|
作者
Ferahtia, N. [1 ]
Allaoui, S. E. [2 ]
机构
[1] Mohamed Boudiaf Univ Msila, Dept Math, Lab Pures & Appl Math, POB 166 Ichbilia, Msila 28000, Algeria
[2] Laghouat Univ, Dept Math & Informat, Laghouat 03000, Algeria
关键词
Besov spaces; Lizorkin-Triebel spaces; Localization property;
D O I
10.15330/cmp.10.1.71-78
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The notion of a localization property of Besov spaces is introduced by G. Bourdaud, where he has provided that the Besov spaces B-p,q(s) (R-n), with s is an element of R and p, q is an element of [1, +infinity] such that p not equal q, are not localizable in the l(p) norm. Further, he has provided that the Besov spaces B-p,q(s) are embedded into localized Besov spaces (B-p,q(s))(lp) (i.e., B-p,q(s) hooked right arrow (B-p,q(s))(lp), for p >= q). Also, he has provided that the localized Besov spaces (B-p,q(s))(lp) are embedded into the Besov spaces B-p,q(s) (i.e., (B-p,q(s))(lp) hooked right arrow B-p,q(s), for p <= q). In particular, B-p,q(s) is localizable in the l(p) norm, where l(p) is the space of sequences (a(k))(k) such that parallel to(a(k))parallel to(lp) < infinity. In this paper, we generalize the Bourdaud theorem of a localization property of Besov spaces B-p,q(s)(R-n) on the l(r) space, where r is an element of[1, +infinity]. More precisely, we show that any Besov space B-p,q(s) is embedded into the localized Besov space (B-p,q(s))(lr) (i.e., B-p,q(s) hooked right arrow (B-p,q(s))(lr), for r >= max (p, q)). Also we show that any localized Besov space (B-p,q(s))(lr) is embedded into the Besov space B-p,q(s) (i.e., (B-p,q(s))(lr) hooked right arrow B-p,q(s), for r <= min (p, q)). Finally, we show that the Lizorkin-Triebel spaces F-p,q(s)(R-n), where s is an element of R and p, q is an element of[1, +infinity] are localizable in the l(p) norm (i.e., F-p,q(s) = (F-p,q(s))(lp)).
引用
收藏
页码:71 / 78
页数:8
相关论文
共 50 条
  • [41] Traces of Besov spaces revisited
    Johnsen, J
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2000, 19 (03): : 763 - 779
  • [42] Oscillating singularities in Besov spaces
    Melot, C
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2004, 83 (03): : 367 - 416
  • [43] THE CONVOLUTION IN ANISOTROPIC BESOV SPACES
    Tleukhanova, N. T.
    Sadykova, K. K.
    JOURNAL OF MATHEMATICS MECHANICS AND COMPUTER SCIENCE, 2020, 106 (02): : 18 - 30
  • [44] Harmonic Besov spaces on the ball
    Gergun, Secil
    Kaptanoglu, H. Turgay
    Ureyen, A. Ersin
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2016, 27 (09)
  • [45] Greedy Bases for Besov Spaces
    Dilworth, S. J.
    Freeman, D.
    Odell, E.
    Schlumprecht, T.
    CONSTRUCTIVE APPROXIMATION, 2011, 34 (02) : 281 - 296
  • [46] Functions operating on Besov spaces
    Kateb, D
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (03) : 735 - 743
  • [47] Wavelets on fractals and besov spaces
    Alf Jonsson
    Journal of Fourier Analysis and Applications, 1998, 4 : 329 - 340
  • [48] Rearrangements of functions in Besov spaces
    Cianchi, A
    MATHEMATISCHE NACHRICHTEN, 2001, 230 : 19 - 35
  • [49] Besov Spaces with General Weights
    Drihem, Douadi
    JOURNAL OF MATHEMATICAL STUDY, 2023, 56 (01) : 18 - 92
  • [50] Brownian potentials and Besov spaces
    Pop-Stojanovic, Z
    Rao, M
    Sikic, H
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1998, 50 (02) : 331 - 337