A GENERALIZATION OF A LOCALIZATION PROPERTY OF BESOV SPACES

被引:1
|
作者
Ferahtia, N. [1 ]
Allaoui, S. E. [2 ]
机构
[1] Mohamed Boudiaf Univ Msila, Dept Math, Lab Pures & Appl Math, POB 166 Ichbilia, Msila 28000, Algeria
[2] Laghouat Univ, Dept Math & Informat, Laghouat 03000, Algeria
关键词
Besov spaces; Lizorkin-Triebel spaces; Localization property;
D O I
10.15330/cmp.10.1.71-78
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The notion of a localization property of Besov spaces is introduced by G. Bourdaud, where he has provided that the Besov spaces B-p,q(s) (R-n), with s is an element of R and p, q is an element of [1, +infinity] such that p not equal q, are not localizable in the l(p) norm. Further, he has provided that the Besov spaces B-p,q(s) are embedded into localized Besov spaces (B-p,q(s))(lp) (i.e., B-p,q(s) hooked right arrow (B-p,q(s))(lp), for p >= q). Also, he has provided that the localized Besov spaces (B-p,q(s))(lp) are embedded into the Besov spaces B-p,q(s) (i.e., (B-p,q(s))(lp) hooked right arrow B-p,q(s), for p <= q). In particular, B-p,q(s) is localizable in the l(p) norm, where l(p) is the space of sequences (a(k))(k) such that parallel to(a(k))parallel to(lp) < infinity. In this paper, we generalize the Bourdaud theorem of a localization property of Besov spaces B-p,q(s)(R-n) on the l(r) space, where r is an element of[1, +infinity]. More precisely, we show that any Besov space B-p,q(s) is embedded into the localized Besov space (B-p,q(s))(lr) (i.e., B-p,q(s) hooked right arrow (B-p,q(s))(lr), for r >= max (p, q)). Also we show that any localized Besov space (B-p,q(s))(lr) is embedded into the Besov space B-p,q(s) (i.e., (B-p,q(s))(lr) hooked right arrow B-p,q(s), for r <= min (p, q)). Finally, we show that the Lizorkin-Triebel spaces F-p,q(s)(R-n), where s is an element of R and p, q is an element of[1, +infinity] are localizable in the l(p) norm (i.e., F-p,q(s) = (F-p,q(s))(lp)).
引用
收藏
页码:71 / 78
页数:8
相关论文
共 50 条
  • [21] Nuclear Embeddings of Besov Spaces into Zygmund Spaces
    Cobos, Fernando
    Edmunds, David E.
    Kuehn, Thomas
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2020, 26 (01)
  • [22] Embedding of Besov Spaces into Tent Spaces and Applications
    Qian, R.
    Li, S.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2021, 56 (05): : 295 - 306
  • [23] On Besov spaces of logarithmic smoothness and Lipschitz spaces
    Cobos, Fernando
    Dominguez, Oscar
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 425 (01) : 71 - 84
  • [24] Besov spaces and Herz spaces on local fields
    Zhu, Yueping
    Zheng, Weixing
    Science in China, Series A: Mathematics, Physics, Astronomy, 41 (10): : 6 - 1060
  • [25] Approximation spaces, limiting interpolation and Besov spaces
    Cobos, Fernando
    Dominguez, Oscar
    JOURNAL OF APPROXIMATION THEORY, 2015, 189 : 43 - 66
  • [26] Characterizations of anisotropic Besov spaces
    Barrios, B.
    Betancor, J. J.
    MATHEMATISCHE NACHRICHTEN, 2011, 284 (14-15) : 1796 - 1819
  • [27] Convergence and compactness in Besov spaces
    Almira, JM
    Acosta, FP
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1998, 29 (10): : 1073 - 1082
  • [28] Generalized Besov Spaces and Their Applications
    Kawazoe, Takeshi
    Mejjaoli, Hatem
    TOKYO JOURNAL OF MATHEMATICS, 2012, 35 (02) : 297 - 320
  • [29] A characterization of Besov spaces on spaces of homogeneous type
    Gu, D.
    Zhongshan Daxue Xuebao/Acta Scientiarum Natralium Universitatis Sunyatseni, 2001, 40 (03): : 21 - 24
  • [30] Nuclear Embeddings of Besov Spaces into Zygmund Spaces
    Fernando Cobos
    David E. Edmunds
    Thomas Kühn
    Journal of Fourier Analysis and Applications, 2020, 26