WILSON LOOPS AND NON-ABELIAN STATISTICS IN THE QUANTUM HALL-EFFECT

被引:0
|
作者
STONE, M
机构
来源
关键词
D O I
10.1142/S0217979292002280
中图分类号
O59 [应用物理学];
学科分类号
摘要
There is a topological connection between the boundary excitations of a quantum Hall fluid and the quantum numbers of its vortex-like bulk quasi-particles. I use this connection to examine the group properties of vortex excitations in a generalized quantum Hall fluid, and show how the vortex trajectories become Wilson lines interacting via Chern-Simons fields. As a result, I argue that non-abelian statistics, if they exist, should be independent of the detailed properties of the many-body wavefunction and will depend only on the bulk Hall conductivity tensor.
引用
收藏
页码:2875 / 2891
页数:17
相关论文
共 50 条
  • [41] Non-abelian Wilson surfaces
    Chepelev, I
    JOURNAL OF HIGH ENERGY PHYSICS, 2002, (02):
  • [42] Topological Quantum Liquids with Quaternion Non-Abelian Statistics
    Xu, Cenke
    Ludwig, Andreas W. W.
    PHYSICAL REVIEW LETTERS, 2012, 108 (04)
  • [43] Non-Abelian statistics of vortices with non-Abelian Dirac fermions
    Yasui, Shigehiro
    Hirono, Yuji
    Itakura, Kazunori
    Nitta, Muneto
    PHYSICAL REVIEW E, 2013, 87 (05):
  • [44] Landau-Ginzburg theories of non-Abelian quantum Hall states from non-Abelian bosonization
    Goldman, Hart
    Sohal, Ramanjit
    Fradkin, Eduardo
    PHYSICAL REVIEW B, 2019, 100 (11)
  • [45] Non-Abelian Optical Lattices: Anomalous Quantum Hall Effect and Dirac Fermions
    Goldman, N.
    Kubasiak, A.
    Bermudez, A.
    Gaspard, P.
    Lewenstein, M.
    Martin-Delgado, M. A.
    PHYSICAL REVIEW LETTERS, 2009, 103 (03)
  • [46] Non-Abelian Stokes theorem for Wilson loops associated with general gauge groups
    Hirayama, M
    Ueno, M
    PROGRESS OF THEORETICAL PHYSICS, 2000, 103 (01): : 151 - 159
  • [47] Abelian representation for the non-Abelian Wilson loop and the non-Abelian Stokes theorem on the lattice
    Zubkov, MA
    PHYSICAL REVIEW D, 2003, 68 (05)
  • [48] Conformal Field Theory Approach to Abelian and Non-Abelian Quantum Hall Quasielectrons
    Hansson, T. H.
    Hermanns, M.
    Regnault, N.
    Viefers, S.
    PHYSICAL REVIEW LETTERS, 2009, 102 (16)
  • [49] Multichannel Kondo Models in Non-Abelian Quantum Hall Droplets
    Fiete, Gregory A.
    Bishara, Waheb
    Nayak, Chetan
    PHYSICAL REVIEW LETTERS, 2008, 101 (17)
  • [50] From Luttinger liquid to non-Abelian quantum Hall states
    Teo, Jeffrey C. Y.
    Kane, C. L.
    PHYSICAL REVIEW B, 2014, 89 (08)