WILSON LOOPS AND NON-ABELIAN STATISTICS IN THE QUANTUM HALL-EFFECT

被引:0
|
作者
STONE, M
机构
来源
关键词
D O I
10.1142/S0217979292002280
中图分类号
O59 [应用物理学];
学科分类号
摘要
There is a topological connection between the boundary excitations of a quantum Hall fluid and the quantum numbers of its vortex-like bulk quasi-particles. I use this connection to examine the group properties of vortex excitations in a generalized quantum Hall fluid, and show how the vortex trajectories become Wilson lines interacting via Chern-Simons fields. As a result, I argue that non-abelian statistics, if they exist, should be independent of the detailed properties of the many-body wavefunction and will depend only on the bulk Hall conductivity tensor.
引用
收藏
页码:2875 / 2891
页数:17
相关论文
共 50 条
  • [21] Non-abelian statistics in the interference noise of the Moore-Read quantum Hall state
    Ardonne, Eddy
    Kim, Eun-Ah
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
  • [22] Plasma analogy and non-Abelian statistics for Ising-type quantum Hall states
    Bonderson, Parsa
    Gurarie, Victor
    Nayak, Chetan
    PHYSICAL REVIEW B, 2011, 83 (07)
  • [23] Aharonov-Bohm effect in the non-Abelian quantum Hall fluid
    Georgiev, Lachezar S.
    Geller, Michael R.
    PHYSICAL REVIEW B, 2006, 73 (20)
  • [24] Non-Abelian Parton Fractional Quantum Hall Effect in Multilayer Graphene
    Wu, Ying-Hai
    Shi, Tao
    Jain, Jainendra K.
    NANO LETTERS, 2017, 17 (08) : 4643 - 4647
  • [25] On the Non-Abelian Field Explanation for Fractorial Quantum Anomalous Hall Effect
    Shen, Jie
    Yu, Jian-Guo
    INTERNATIONAL CONFERENCE ON ELECTRONIC AND ELECTRICAL ENGINEERING (CEEE 2014), 2014, : 26 - 41
  • [26] Product integral representations of Wilson lines and Wilson loops and non-abelian stokes theorem
    Karp, Robert L.
    Mansouri, Freydoon
    Rno, Jung S.
    Turkish Journal of Physics, 2000, 24 (03): : 365 - 384
  • [27] Product integral representations of Wilson lines and Wilson loops and non-abelian stokes theorem
    Karp, Robert L.
    Mansouri, Freydoon
    Rno, Jung S.
    2000, Sci Tech Res Counc Turkey, Ankara, Turkey (24):
  • [28] Path integral representation for Wilson loops and the non-Abelian Stokes theorem
    Faber, M
    Ivanov, AN
    Troitskaya, NI
    Zach, M
    PHYSICAL REVIEW D, 2000, 62 (02) : 1 - 22
  • [29] Supersymmetric Wilson lines and loops, and super non-Abelian Stokes theorem
    Karp, RL
    Mansouri, F
    PHYSICS LETTERS B, 2000, 480 (1-2) : 213 - 221
  • [30] Quantum groups and non-Abelian braiding in quantum Hall systems
    Slingerland, JK
    Bais, FA
    NUCLEAR PHYSICS B, 2001, 612 (03) : 229 - 290