SPECTRAL PROPERTIES FOR THE EQUATION OF VIBRATING BEAM

被引:0
|
作者
Aliyev, Ziyatkhan S. [1 ,2 ]
Guliyeva, Sevinc B. [3 ]
机构
[1] Baku State Univ, AZ-1148 Baku, Azerbaijan
[2] Natl Acad Sci Azerbaijan, Inst Math & Mech, AZ-1141 Baku, Azerbaijan
[3] Ganja State Univ, AZ-2000 Ganja, Azerbaijan
关键词
fourth order eigenvalue problems; spectral parameter in the boundary condition; regular and completely regular Sturmian systems; eigenvalue; oscillatory properties of the eigenfunctions;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the properties of the natural frequencies and the corresponding harmonics of transverse vibrations of a rod is exposed to tracking and axial forces. It is known that problems of this type leads to a spectral fourth-order problem with spectral parameter in the boundary conditions. We study the general characteristics of the location of the eigenvalues on the real axis and oscillation properties of eigenfunctions of these problems.
引用
收藏
页码:135 / 145
页数:11
相关论文
共 50 条
  • [41] Spectral properties of Christoffel equation for Rayleigh waves
    Kaptsov, AV
    Kuznetsov, SV
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE ASTRONOMIE, 1999, 327 (11): : 1123 - 1128
  • [42] Multiplicative Bessel equation and its spectral properties
    Yilmaz, Emrah
    RICERCHE DI MATEMATICA, 2024, 73 (03) : 1289 - 1305
  • [43] Frequency Equation of Flexural Vibrating Cantilever Beam Considering the Rotary Inertial Moment of an Attached Mass
    Wang, Binghui
    Wang, Zhihua
    Zuo, Xi
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [44] Dynamic absorption in a vibrating beam
    Singh, AN
    Ram, YM
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2003, 217 (02) : 187 - 197
  • [45] INVERSE PROBLEM FOR A VIBRATING BEAM
    BARCILON, V
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1976, 27 (03): : 347 - 357
  • [46] Continuity of the eigenvalues for a vibrating beam
    Jiang, Xin
    Liu, Kairong
    Meng, Gang
    She, Zhikun
    APPLIED MATHEMATICS LETTERS, 2017, 67 : 60 - 66
  • [47] VIBRATING BEAM FLUID OSCILLATOR
    KRISHNAIYER, R
    VELICER, WJ
    INSTRUMENTS & CONTROL SYSTEMS, 1972, 45 (02): : 46 - +
  • [48] THE INVERSE PROBLEM FOR THE VIBRATING BEAM
    GLADWELL, GML
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1984, 393 (1805): : 277 - 295
  • [49] ON OPTIMAL DESIGN OF A VIBRATING BEAM
    NIORDSON, FI
    QUARTERLY OF APPLIED MATHEMATICS, 1965, 23 (01) : 47 - +
  • [50] Vibrating wires for beam diagnostics
    Arutunian, S. G.
    Mailian, M. R.
    Wittenburg, Kay
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2007, 572 (03): : 1022 - 1032