SPECTRAL PROPERTIES FOR THE EQUATION OF VIBRATING BEAM

被引:0
|
作者
Aliyev, Ziyatkhan S. [1 ,2 ]
Guliyeva, Sevinc B. [3 ]
机构
[1] Baku State Univ, AZ-1148 Baku, Azerbaijan
[2] Natl Acad Sci Azerbaijan, Inst Math & Mech, AZ-1141 Baku, Azerbaijan
[3] Ganja State Univ, AZ-2000 Ganja, Azerbaijan
关键词
fourth order eigenvalue problems; spectral parameter in the boundary condition; regular and completely regular Sturmian systems; eigenvalue; oscillatory properties of the eigenfunctions;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the properties of the natural frequencies and the corresponding harmonics of transverse vibrations of a rod is exposed to tracking and axial forces. It is known that problems of this type leads to a spectral fourth-order problem with spectral parameter in the boundary conditions. We study the general characteristics of the location of the eigenvalues on the real axis and oscillation properties of eigenfunctions of these problems.
引用
收藏
页码:135 / 145
页数:11
相关论文
共 50 条
  • [21] AN OPTIMUM IMPLICIT RECURRENCE FORMULA FOR SOLUTION OF EQUATION OF VIBRATING BEAM
    MITCHELL, AR
    APPLIED SCIENTIFIC RESEARCH SECTION A-MECHANICS HEAT CHEMICAL ENGINEERING MATHEMATICAL METHODS, 1964, 14 (03): : 177 - &
  • [22] ON DIFFERENTIAL EQUATION OF A VIBRATING BEAM INCLUDING EFFECT OF INNER DAMPING
    SCHROTH, G
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1964, 44 (12): : 606 - &
  • [23] PRUFER TRANSFORMATION FOR EQUATION OF A VIBRATING BEAM SUBJECT TO AXIAL FORCES
    BANKS, DO
    KUROWSKI, GJ
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1977, 24 (01) : 57 - 74
  • [24] Frequency Equation of Flexural Vibrating Cantilever Beam with an Additional Mass
    Wang, Bing-Hui
    Chen, Guo-Xing
    Wang, Zhi-Hua
    International Conference on Mechanics, Building Material and Civil Engineering (MBMCE 2015), 2015, : 369 - 373
  • [25] Spectral properties of a beam equation with eigenvalue parameter occurring linearly in the boundary conditions
    Aliyev, Ziyatkhan S.
    Mamedova, Gunay T.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2022, 152 (03) : 780 - 801
  • [26] SELECTIVE PERTURBATION OF SPECTRAL PROPERTIES OF VIBRATING SYSTEMS USING FEEDBACK
    LANCASTER, P
    MAROULAS, J
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1988, 98 : 309 - 330
  • [27] On the stabilization of a vibrating equation
    Chentouf, B
    Xu, CZ
    Sallet, G
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 39 (05) : 537 - 558
  • [28] ON THE EQUATION OF THE VIBRATING STRING
    FELLER, W
    JOURNAL OF MATHEMATICS AND MECHANICS, 1959, 8 (03): : 339 - 348
  • [29] Damping of a vibrating beam
    Hietanen, J
    Bomer, J
    Jonsmann, J
    Olthuis, W
    Bergveld, P
    Kaski, K
    SENSORS AND ACTUATORS A-PHYSICAL, 2000, 86 (1-2) : 39 - 44
  • [30] Spectral finite elements for vibrating rods and beams with random field properties
    Ostoja-Starzewski, M
    Woods, A
    JOURNAL OF SOUND AND VIBRATION, 2003, 268 (04) : 779 - 797