Extension of Karamata inequality for generalized inverse trigonometric functions

被引:0
|
作者
Baricz, Arpad [1 ]
Pogany, Tibor K. [2 ]
机构
[1] Babes Bolyai Univ, Dept Econ, Cluj Napoca, Romania
[2] Univ Rijeka, Fac Maritime Studies, Rijeka, Croatia
来源
关键词
Karamata's inequality; Ramanujan's question 294; zero-balanced hyper-geometric functions; generalized inverse trigonometric functions; rational upper bounds;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Discussing Ramanujan's Question 294, Karamata established the inequality log x /x-1 <= 1+3 root x / x + 3 root x, (x > 0, x not equal 1), (*) which is the cornerstone of this paper. We generalize the above inequality transforming into terms of arctan and artanh. Moreover, we expand the established result to the class of generalized inverse p-trigonometric arctanp and to hyperbolic artanh(p) functions.
引用
收藏
页码:379 / 384
页数:6
相关论文
共 50 条
  • [31] An inequality with Fibonacci numbers and trigonometric functions Proposal
    Batinetu-Giurgiu, D. M.
    Stanciu, Neculai
    FIBONACCI QUARTERLY, 2018, 56 (04): : 376 - 376
  • [32] GENERALIZED TRIGONOMETRIC FUNCTIONS IN COMPLEX DOMAIN
    Girg, Petr
    Kotrla, Lukas
    MATHEMATICA BOHEMICA, 2015, 140 (02): : 223 - 239
  • [33] Generalized Trigonometric Functions and Matrix Parameterization
    Dattoli G.
    Licciardi S.
    Sabia E.
    International Journal of Applied and Computational Mathematics, 2017, 3 (Suppl 1) : 115 - 128
  • [34] Basis properties of generalized trigonometric functions
    Edmunds, David E.
    Gurka, Petr
    Lang, Jan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 420 (02) : 1680 - 1692
  • [35] AN EXTENSION OF THE GENERALIZED SCHUR INEQUALITY
    MOND, B
    PECARIC, JE
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1995, 52 (02) : 341 - 343
  • [36] Generalized Trigonometric Functions and Elementary Applications
    Dattoli G.
    Palma E.D.
    Nguyen F.
    Sabia E.
    International Journal of Applied and Computational Mathematics, 2017, 3 (2) : 445 - 458
  • [37] Inequalities for the generalized trigonometric and hyperbolic functions
    Klen, Riku
    Vuorinen, Matti
    Zhang, Xiaohui
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 409 (01) : 521 - 529
  • [38] Inequalities for the generalized trigonometric and hyperbolic functions
    Ma, Xiaoyan
    Si, Xiangbin
    Zhong, Genhong
    He, Jianhui
    OPEN MATHEMATICS, 2020, 18 : 1580 - 1589
  • [39] Inequalities on generalized trigonometric and hyperbolic functions
    Yang, Chen-Yan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 419 (02) : 775 - 782
  • [40] Algorithms for Calculating Generalized Trigonometric Functions
    Dronyuk, Ivanna
    ALGORITHMS, 2025, 18 (02)