Extension of Karamata inequality for generalized inverse trigonometric functions

被引:0
|
作者
Baricz, Arpad [1 ]
Pogany, Tibor K. [2 ]
机构
[1] Babes Bolyai Univ, Dept Econ, Cluj Napoca, Romania
[2] Univ Rijeka, Fac Maritime Studies, Rijeka, Croatia
来源
关键词
Karamata's inequality; Ramanujan's question 294; zero-balanced hyper-geometric functions; generalized inverse trigonometric functions; rational upper bounds;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Discussing Ramanujan's Question 294, Karamata established the inequality log x /x-1 <= 1+3 root x / x + 3 root x, (x > 0, x not equal 1), (*) which is the cornerstone of this paper. We generalize the above inequality transforming into terms of arctan and artanh. Moreover, we expand the established result to the class of generalized inverse p-trigonometric arctanp and to hyperbolic artanh(p) functions.
引用
收藏
页码:379 / 384
页数:6
相关论文
共 50 条
  • [21] Inverse Trigonometric Functions Arcsin and Arccos
    Kornilowicz, Artur
    Shidama, Yasunari
    FORMALIZED MATHEMATICS, 2005, 13 (01): : 73 - 79
  • [22] Integrals of inverse trigonometric and polylogarithmic functions
    Sofo, Anthony
    RAMANUJAN JOURNAL, 2021, 54 (02): : 291 - 307
  • [23] Inverse Trigonometric Functions Arcsec and Arccosec
    Xie, Bing
    Liang, Xiquan
    Ge, Fuguo
    FORMALIZED MATHEMATICS, 2008, 16 (02): : 159 - 165
  • [24] On generalized trigonometric functions and series of rational functions
    Yu, Han
    JOURNAL OF NUMBER THEORY, 2017, 180 : 512 - 532
  • [25] Bounds for Quotients of Inverse Trigonometric and Inverse Hyperbolic Functions
    Thool, Sumedh B.
    Bagul, Yogesh J.
    Dhaigude, Ramkrishna M.
    Chesneau, Christophe
    AXIOMS, 2022, 11 (06)
  • [26] Inverse Trigonometric Functions Arctan and Arccot
    Liang, Xiquan
    Xie, Bing
    FORMALIZED MATHEMATICS, 2008, 16 (02): : 147 - 158
  • [27] An inequality with Fibonacci numbers and trigonometric functions Solution
    Mondal, Soumitra
    FIBONACCI QUARTERLY, 2018, 56 (04): : 377 - 377
  • [28] On generalized trigonometric functions with two parameters
    Bhayo, Barkat Ali
    Vuorinen, Matti
    JOURNAL OF APPROXIMATION THEORY, 2012, 164 (10) : 1415 - 1426
  • [29] A SURVEY FOR GENERALIZED TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS
    Yin, Li
    Huang, Li-Guo
    Wang, Yong-Li
    Lin, Xiu-Li
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2019, 13 (03): : 833 - 854
  • [30] On Functions Bounded by Karamata Functions
    Cadena M.
    Kratz M.
    Omey E.
    Journal of Mathematical Sciences, 2019, 237 (5) : 621 - 630