On Tribonacci functions and Tribonacci numbers

被引:0
|
作者
Parizi, Maryam Naderi [1 ]
Gordji, Madjid Eshaghi [2 ]
机构
[1] Payame Noor Univ, Dept Math, Tehran, Iran
[2] Semnan Univ, Dept Math, Semnan, Iran
关键词
Tribonacci function; Tribonacci number; f-even; f-odd;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider Tribonacci functions on the real numbers R; i.e, functions f : R -> R such that for all x is an element of R, f(x + 3) = f(x + 2) + f(x + 1) + f(x). We develop the notion of Tribonacci functions using the concept of f-even and f-odd functions. Moreover, we show that if f is a Tribonachi function, then lim(x ->infinity) f(x + 1)/f(x) = beta such that beta is one of the roots of equation x(3) - x(2) - x - 1 = 0 for which beta is greater than one.
引用
收藏
页码:23 / 32
页数:10
相关论文
共 50 条
  • [41] Tribonacci Numbers and Some Related Interesting Identities
    Zhou, Shujie
    Chen, Li
    SYMMETRY-BASEL, 2019, 11 (10):
  • [42] Unrestricted Tribonacci and Tribonacci-Lucas quaternions
    Kizilaslan, Gonca
    Karabulut, Leyla
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2023, 29 (02) : 310 - 321
  • [43] CONVOLUTION IDENTITIES FOR TRIBONACCI NUMBERS WITH SYMMETRIC FORMULAE
    Komatsu, Takao
    Li, Rusen
    MATHEMATICAL REPORTS, 2019, 21 (01): : 27 - 47
  • [44] On the Problem of Pillai with Tribonacci Numbers and Powers of 3
    Ddamulira, Mahadi
    JOURNAL OF INTEGER SEQUENCES, 2019, 22 (05)
  • [45] ON TRIBONACCI NUMBERS AND 3-REGULAR COMPOSITIONS
    Robbins, Neville
    FIBONACCI QUARTERLY, 2014, 52 (01): : 16 - 19
  • [46] DEMOIVRE-TYPE IDENTITIES FOR THE TRIBONACCI NUMBERS
    LIN, PY
    FIBONACCI QUARTERLY, 1988, 26 (02): : 131 - 134
  • [47] Polynomials whose coefficients are generalized Tribonacci numbers
    Mansour, Toufik
    Shattuck, Mark
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (15) : 8366 - 8374
  • [48] Closed form for a sum of Tribonacci Lucas numbers
    Frontczak, Robert
    FIBONACCI QUARTERLY, 2020, 58 (04): : 379 - 379
  • [49] The numbers of repeated palindromes in the Fibonacci and Tribonacci words
    Huang Yuke
    Wen Zhiying
    DISCRETE APPLIED MATHEMATICS, 2017, 230 : 78 - 90
  • [50] A TRIBONACCI-LIKE SEQUENCE OF COMPOSITE NUMBERS
    Siurys, Jonas
    FIBONACCI QUARTERLY, 2011, 49 (04): : 298 - 302