On Tribonacci functions and Tribonacci numbers

被引:0
|
作者
Parizi, Maryam Naderi [1 ]
Gordji, Madjid Eshaghi [2 ]
机构
[1] Payame Noor Univ, Dept Math, Tehran, Iran
[2] Semnan Univ, Dept Math, Semnan, Iran
来源
INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE | 2016年 / 11卷 / 01期
关键词
Tribonacci function; Tribonacci number; f-even; f-odd;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider Tribonacci functions on the real numbers R; i.e, functions f : R -> R such that for all x is an element of R, f(x + 3) = f(x + 2) + f(x + 1) + f(x). We develop the notion of Tribonacci functions using the concept of f-even and f-odd functions. Moreover, we show that if f is a Tribonachi function, then lim(x ->infinity) f(x + 1)/f(x) = beta such that beta is one of the roots of equation x(3) - x(2) - x - 1 = 0 for which beta is greater than one.
引用
收藏
页码:23 / 32
页数:10
相关论文
共 50 条
  • [11] On Tribonacci Numbers that are Products of Factorials
    Alahmadi, Adel
    Luca, Florian
    JOURNAL OF INTEGER SEQUENCES, 2023, 26 (02)
  • [12] Incomplete Tribonacci Numbers and Polynomials
    Ramirez, jose L.
    Sirvent, Victor F.
    JOURNAL OF INTEGER SEQUENCES, 2014, 17 (04)
  • [13] Identities with Fibonacci and Tribonacci numbers
    Frontczak, Robert
    Ventas, Andres
    FIBONACCI QUARTERLY, 2022, 60 (04): : 375 - 377
  • [14] Sums of Squares of Tribonacci Numbers
    Ohtsuka, Hideyuki
    FIBONACCI QUARTERLY, 2013, 51 (03): : 285 - 285
  • [15] MORE IDENTITIES ON THE TRIBONACCI NUMBERS
    Feng, Jishe
    ARS COMBINATORIA, 2011, 100 : 73 - 78
  • [16] On square Tribonacci Lucas numbers
    Irmak, Nurettin
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 50 (06): : 1652 - 1657
  • [17] On the sum of reciprocal Tribonacci numbers
    Komatsu, Takao
    ARS COMBINATORIA, 2011, 98 : 447 - 459
  • [18] TRIBONACCI NUMBERS THAT ARE PRODUCTS OF TWO FIBONACCI NUMBERS
    Luca, Florian
    Odjoumani, Japhet
    Togbe, Alain
    FIBONACCI QUARTERLY, 2023, 61 (04): : 298 - 304
  • [19] An identity involving Tribonacci numbers Solution
    Luca, Florian
    FIBONACCI QUARTERLY, 2019, 57 (02): : 186 - 186
  • [20] Infinite product involves the Tribonacci numbers
    Kuhapatanakul, Kantaphon
    Anantakitpaisal, Pornpawee
    Onsri, Chanokchon
    Nhongkai, Suriya Na
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2016, 22 (04) : 78 - 81