On Tribonacci functions and Tribonacci numbers

被引:0
|
作者
Parizi, Maryam Naderi [1 ]
Gordji, Madjid Eshaghi [2 ]
机构
[1] Payame Noor Univ, Dept Math, Tehran, Iran
[2] Semnan Univ, Dept Math, Semnan, Iran
关键词
Tribonacci function; Tribonacci number; f-even; f-odd;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider Tribonacci functions on the real numbers R; i.e, functions f : R -> R such that for all x is an element of R, f(x + 3) = f(x + 2) + f(x + 1) + f(x). We develop the notion of Tribonacci functions using the concept of f-even and f-odd functions. Moreover, we show that if f is a Tribonachi function, then lim(x ->infinity) f(x + 1)/f(x) = beta such that beta is one of the roots of equation x(3) - x(2) - x - 1 = 0 for which beta is greater than one.
引用
收藏
页码:23 / 32
页数:10
相关论文
共 50 条
  • [1] TRIBONACCI NUMBERS AND RELATED FUNCTIONS
    ALLADI, K
    HOGGATT, VE
    FIBONACCI QUARTERLY, 1977, 15 (01): : 42 - 45
  • [2] CONSTRUCTION OF SYMMETRIC FUNCTIONS OF GENERALIZED TRIBONACCI NUMBERS
    Chelgham, Mourad
    Boussayoud, Ali
    JOURNAL OF SCIENCE AND ARTS, 2020, (01): : 65 - 74
  • [3] Matrix Sequences of Tribonacci and Tribonacci-Lucas Numbers
    Soykan, Yuksel
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2020, 11 (02): : 281 - 295
  • [4] A FORMULA FOR TRIBONACCI NUMBERS
    MCCARTY, CP
    FIBONACCI QUARTERLY, 1981, 19 (05): : 391 - 393
  • [5] APPLICATION OF TRIBONACCI NUMBERS
    BEZUSZKA, S
    DANGELO, L
    FIBONACCI QUARTERLY, 1977, 15 (02): : 140 - 144
  • [6] On perfect numbers close to Tribonacci numbers
    Irmak, Nurettin
    Acikel, Abdullah
    1ST INTERNATIONAL CONFERENCE ON MATHEMATICAL AND RELATED SCIENCES (ICMRS 2018), 2018, 1991
  • [7] Convolution identities for Tribonacci numbers
    Komatsu, Takao
    ARS COMBINATORIA, 2018, 136 : 199 - 210
  • [8] A PROPERTY OF FIBONACCI AND TRIBONACCI NUMBERS
    GODSIL, CD
    RAZEN, R
    FIBONACCI QUARTERLY, 1983, 21 (01): : 13 - 17
  • [9] TRIBONACCI NUMBERS AND PASCALS PYRAMID
    SHANNON, AG
    FIBONACCI QUARTERLY, 1977, 15 (03): : 268 - &
  • [10] Reciprocal Sums of the Tribonacci Numbers
    Anantakitpaisal, Pornpawee
    Kuhapatanakul, Kantaphon
    JOURNAL OF INTEGER SEQUENCES, 2016, 19 (02)