SCHRODINGER EQUATION WITH EXPONENTIAL NONLINEARITY

被引:4
|
作者
SHEERIN, JP
ONG, RSB
机构
[1] UNIV MICHIGAN,DEPT PHYS,ANN ARBOR,MI 48109
[2] UNIV MICHIGAN,DEPT AEROSP ENGN,ANN ARBOR,MI 48109
关键词
D O I
10.1016/0375-9601(77)90903-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:279 / 280
页数:2
相关论文
共 50 条
  • [41] Nonlinear Schrodinger equation for optical media with quintic nonlinearity
    Mohanachbndran, G
    Kuriakose, VC
    Joseph, KB
    PRAMANA-JOURNAL OF PHYSICS, 1996, 46 (04): : 305 - 314
  • [42] Multiplicity of Normalized Solutions for Schrodinger Equation with Mixed Nonlinearity
    Xu, Lin
    Song, Changxiu
    Xie, Qilin
    TAIWANESE JOURNAL OF MATHEMATICS, 2024, 28 (03): : 589 - 609
  • [43] ON THE DERIVATION OF THE SCHRODINGER EQUATION WITH POINT-LIKE NONLINEARITY
    Cacciapuoti, C.
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2015, 6 (01): : 79 - 94
  • [44] CONCENTRATION PHENOMENON FOR A FRACTIONAL SCHRODINGER EQUATION WITH DISCONTINUOUS NONLINEARITY
    Ambrosio, Vincenzo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023,
  • [45] NONLINEARITY SATURATION AS A SINGULAR PERTURBATION OF THE NONLINEAR SCHRODINGER EQUATION
    Glasner, Karl
    Allen-Flowers, Jordan
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2016, 76 (02) : 525 - 550
  • [46] Instability of standing waves of the Schrodinger equation with inhomogeneous nonlinearity
    Liu, Y
    Wang, XP
    Wang, K
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (05) : 2105 - 2122
  • [47] A survey on nonlinear Schrodinger equation with growing nonlocal nonlinearity
    Maeda, Masaya
    Masaki, Satoshi
    NONLINEAR DYNAMICS IN PARTIAL DIFFERENTIAL EQUATIONS, 2015, 64 : 273 - 280
  • [48] Classification of nonnegative solutions to Schrodinger equation with logarithmic nonlinearity
    Peng, Shaolong
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2023, 25 (01)
  • [49] The time fractional Schrodinger equation with a nonlinearity of Hartree type
    Prado, Humberto
    Ramirez, Jose
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (02) : 1845 - 1864
  • [50] Modulation of localized solutions for the Schrodinger equation with logarithm nonlinearity
    Calaca, L.
    Avelar, A. T.
    Bazeia, D.
    Cardoso, W. B.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (09) : 2928 - 2934