Modulation of localized solutions for the Schrodinger equation with logarithm nonlinearity

被引:30
|
作者
Calaca, L. [1 ]
Avelar, A. T. [1 ]
Bazeia, D. [2 ,3 ]
Cardoso, W. B. [1 ]
机构
[1] Univ Fed Goias, Inst Fis, BR-74001970 Goiania, Go, Brazil
[2] Univ Sao Paulo, Inst Fis, BR-05314970 Sao Paulo, Brazil
[3] Univ Fed Paraiba, Dept Fis, BR-58051970 Joao Pessoa, Paraiba, Brazil
基金
巴西圣保罗研究基金会;
关键词
Nonlinear Schrodinger equation; Logarithm nonlinearity; Similarity transformation; Solitons; SOLITONS; MEDIA; MODEL; TIME;
D O I
10.1016/j.cnsns.2014.02.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the presence of localized analytical solutions of the Schrodinger equation with logarithm nonlinearity. After including inhomogeneities in the linear and nonlinear coefficients, we use similarity transformation to convert the nonautonomous nonlinear equation into an autonomous one, which we solve analytically. In particular, we study stability of the analytical solutions numerically. (C) 2014 Elsevier B. V. All rights reserved.
引用
收藏
页码:2928 / 2934
页数:7
相关论文
共 50 条
  • [1] Modulation of localized solutions in an inhomogeneous saturable nonlinear Schrodinger equation
    Calaca, Luciano
    Cardoso, Wesley B.
    OPTICAL AND QUANTUM ELECTRONICS, 2017, 49 (11)
  • [2] Positive solutions of a Schrodinger equation with critical nonlinearity
    Clapp, M
    Ding, YH
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2004, 55 (04): : 592 - 605
  • [3] Soliton solutions of the nonlinear Schrodinger equation with the dual power law nonlinearity and resonant nonlinear Schrodinger equation and their modulation instability analysis
    Ali, Asghar
    Seadawy, Aly R.
    Lu, Dianchen
    OPTIK, 2017, 145 : 79 - 88
  • [4] The nonlinear Schrodinger equation with polynomial law nonlinearity: localized chirped optical and solitary wave solutions
    Aziz, N.
    Seadawy, Aly R.
    Ali, K.
    Sohail, M.
    Rizvi, S. T. R.
    OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (07)
  • [5] Analytical localized wave solutions of the generalized nonautonomous nonlinear Schrodinger equation with Gaussian shaped nonlinearity
    He, Jun-Rong
    Li, Hua-Mei
    Li, Jing
    OPTICS COMMUNICATIONS, 2012, 285 (17) : 3669 - 3673
  • [6] Modulation of localized solutions in quadratic-cubic nonlinear Schrodinger equation with inhomogeneous coefficients
    Cardoso, Wesley B.
    Couto, Hugo L. C.
    Avelar, Ardiley T.
    Bazeia, Dionisio
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 48 : 474 - 483
  • [7] Multiplicity of Normalized Solutions for Schrodinger Equation with Mixed Nonlinearity
    Xu, Lin
    Song, Changxiu
    Xie, Qilin
    TAIWANESE JOURNAL OF MATHEMATICS, 2024, 28 (03): : 589 - 609
  • [8] Classification of nonnegative solutions to Schrodinger equation with logarithmic nonlinearity
    Peng, Shaolong
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2023, 25 (01)
  • [9] Localized nodal solutions for a critical nonlinear Schrodinger equation
    Chen, Shaowei
    Liu, Jiaquan
    Wang, Zhi-Qiang
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (02) : 594 - 640
  • [10] Localized solutions of inhomogeneous saturable nonlinear Schrodinger equation
    da Rocha, Maurilho R.
    Avelar, Ardiley T.
    Cardoso, Wesley B.
    NONLINEAR DYNAMICS, 2023, 111 (05) : 4769 - 4777