SYMMETRY AND REDUCTIONS OF INTEGRABLE DYNAMICAL SYSTEMS: PEAKON AND THE TODA CHAIN SYSTEMS

被引:0
|
作者
Gerdjikov, Vladimir S. [1 ]
Ivanov, Rossen I. [2 ]
Vilasi, Gaetano [3 ,4 ]
机构
[1] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, BU-1784 Sofia, Bulgaria
[2] Dublin Inst Technol, Sch Math Sci, Dublin 8, Ireland
[3] Salerno Univ, Dipartimento Sci Fis ER Caianiello, I-84084 Salerno, Italy
[4] Salerno Univ, INFN Sez Napoli, I-84084 Salerno, Italy
来源
ROMANIAN ASTRONOMICAL JOURNAL | 2014年 / 24卷 / 01期
关键词
integrable dynamical systems; peakons; Toda lattices;
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We are analyzing several types of dynamical systems which are both integrable and important for physical applications. The first type are the so-called peakon systems that appear in the singular solutions of the Camassa-Holm equation describing special types of water waves. The second type are Toda chain systems, that describe molecule interactions. Their complexifications model soliton interactions in the adiabatic approximation. We analyze the algebraic aspects of the Toda chains and describe their real Hamiltonian forms.
引用
收藏
页码:37 / 47
页数:11
相关论文
共 50 条