SYMMETRY AND REDUCTIONS OF INTEGRABLE DYNAMICAL SYSTEMS: PEAKON AND THE TODA CHAIN SYSTEMS

被引:0
|
作者
Gerdjikov, Vladimir S. [1 ]
Ivanov, Rossen I. [2 ]
Vilasi, Gaetano [3 ,4 ]
机构
[1] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, BU-1784 Sofia, Bulgaria
[2] Dublin Inst Technol, Sch Math Sci, Dublin 8, Ireland
[3] Salerno Univ, Dipartimento Sci Fis ER Caianiello, I-84084 Salerno, Italy
[4] Salerno Univ, INFN Sez Napoli, I-84084 Salerno, Italy
来源
ROMANIAN ASTRONOMICAL JOURNAL | 2014年 / 24卷 / 01期
关键词
integrable dynamical systems; peakons; Toda lattices;
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We are analyzing several types of dynamical systems which are both integrable and important for physical applications. The first type are the so-called peakon systems that appear in the singular solutions of the Camassa-Holm equation describing special types of water waves. The second type are Toda chain systems, that describe molecule interactions. Their complexifications model soliton interactions in the adiabatic approximation. We analyze the algebraic aspects of the Toda chains and describe their real Hamiltonian forms.
引用
收藏
页码:37 / 47
页数:11
相关论文
共 50 条
  • [31] DYNAMICAL SYMMETRY OF NONSTATIONARY SYSTEMS
    MALKIN, IA
    MANKO, VI
    TRIFONOV, DA
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A, 1971, A 4 (04): : 773 - &
  • [32] SYMMETRY AND COMPLEXITY IN DYNAMICAL SYSTEMS
    Mainzer, Klaus
    SYMMETRY-CULTURE AND SCIENCE, 2015, 26 (01): : 5 - 38
  • [33] INTEGRABLE REDUCTIONS OF THE DRESSING CHAIN
    Evripidou, Charalampos
    Kassotakis, Pavlos
    Vanhaecke, Pol
    JOURNAL OF COMPUTATIONAL DYNAMICS, 2019, 6 (02): : 277 - 306
  • [34] Symmetry breaking in dynamical systems
    Lauterbach, R
    NONLINEAR DYNAMICAL SYSTEMS AND CHAOS, 1996, 19 : 121 - 143
  • [35] DYNAMICAL SYMMETRY OF CHAOTIC SYSTEMS
    LI, JQ
    ZHU, JD
    GU, JN
    PHYSICAL REVIEW B, 1995, 52 (09): : 6458 - 6466
  • [36] THE DYNAMICAL SYMMETRY OF ISOTROPIC SYSTEMS
    ZHU, DP
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (01): : 85 - 94
  • [37] Pendulum Systems with Dynamical Symmetry
    Lokshin B.Y.
    Samsonov V.A.
    Shamolin M.V.
    Journal of Mathematical Sciences, 2017, 227 (4) : 461 - 519
  • [38] Symmetry in planar dynamical systems
    Lloyd, NG
    Pearson, JM
    JOURNAL OF SYMBOLIC COMPUTATION, 2002, 33 (03) : 357 - 366
  • [39] Positive-entropy integrable systems and the Toda lattice, II
    Butler, Leo T.
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2010, 149 : 491 - 538
  • [40] Quantum Integrable Toda-Like Systems in Deformation Quantization
    Martin Bordemann
    Martin Walter
    Letters in Mathematical Physics, 1999, 48 : 123 - 133