ON DOUBLE COSETS WITH THE TRIVIAL INTERSECTION PROPERTY AND KAZHDAN-LUSZTIG CELLS IN S-n

被引:0
|
作者
Mcdonough, Thomas P. [1 ]
Pallikaros, Christos A. [2 ]
机构
[1] Aberystwyth Univ, Dept Math, Aberystwyth SY23 3BZ, Dyfed, Wales
[2] Univ Cyprus, Dept Math & Stat, POB 20537, CY-1678 Nicosia, Cyprus
关键词
symmetric group; Hecke algebra; Kazhdan-Lusztig cell; generalized tableau; parabolic subgroup;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a composition lambda of n our aim is to obtain reduced forms for all the elements in the Kazhdan-Lusztig (right) cell containing w(J(lambda)), the longest element of the standard parabolic subgroup of S-n corresponding to lambda. We investigate how far this is possible to achieve by looking at elements of the form w(J(lambda))d, where d is a prefix of an element of minimum length in a (W-J(lambda), B) double coset with the trivial intersection property, B being a parabolic subgroup of S-n whose type is 'dual' to that of W-J(lambda).
引用
收藏
页码:25 / 48
页数:24
相关论文
共 50 条