ON DOUBLE COSETS WITH THE TRIVIAL INTERSECTION PROPERTY AND KAZHDAN-LUSZTIG CELLS IN S-n

被引:0
|
作者
Mcdonough, Thomas P. [1 ]
Pallikaros, Christos A. [2 ]
机构
[1] Aberystwyth Univ, Dept Math, Aberystwyth SY23 3BZ, Dyfed, Wales
[2] Univ Cyprus, Dept Math & Stat, POB 20537, CY-1678 Nicosia, Cyprus
关键词
symmetric group; Hecke algebra; Kazhdan-Lusztig cell; generalized tableau; parabolic subgroup;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a composition lambda of n our aim is to obtain reduced forms for all the elements in the Kazhdan-Lusztig (right) cell containing w(J(lambda)), the longest element of the standard parabolic subgroup of S-n corresponding to lambda. We investigate how far this is possible to achieve by looking at elements of the form w(J(lambda))d, where d is a prefix of an element of minimum length in a (W-J(lambda), B) double coset with the trivial intersection property, B being a parabolic subgroup of S-n whose type is 'dual' to that of W-J(lambda).
引用
收藏
页码:25 / 48
页数:24
相关论文
共 50 条
  • [21] CONJUGACY CLASSES OF INVOLUTIONS AND KAZHDAN-LUSZTIG CELLS
    Bonnafe, Cedric
    Geck, Meinolf
    REPRESENTATION THEORY, 2014, 18 : 155 - 182
  • [22] Kazhdan-Lusztig cells and Robinson-Schensted correspondence
    Iancu, L
    COMPTES RENDUS MATHEMATIQUE, 2003, 336 (10) : 791 - 794
  • [23] ON THE STRUCTURE OF KAZHDAN-LUSZTIG CELLS FOR BRANCHED DYNKIN DIAGRAMS
    GARFINKLE, D
    VOGAN, DA
    JOURNAL OF ALGEBRA, 1992, 153 (01) : 91 - 120
  • [24] Specht modules and Kazhdan-Lusztig cells in type Bn
    Geck, Meinolf
    Lancu, Lacrimioara
    Pallikaros, Christos
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (06) : 1310 - 1320
  • [25] Kazhdan-Lusztig cells and the Frobenius-Schur indicator
    Geck, Meinolf
    JOURNAL OF ALGEBRA, 2014, 398 : 329 - 342
  • [26] On Domino Insertion and Kazhdan-Lusztig Cells in Type Bn
    Bonnafe, Cedric
    Geck, Meinolf
    Iancu, Lacrimioara
    Lam, Thomas
    REPRESENTATION THEORY OF ALGEBRAIC GROUPS AND QUANTUM GROUPS, 2010, 284 : 33 - +
  • [27] CALOGERO-MOSER VERSUS KAZHDAN-LUSZTIG CELLS
    Bonnafe, Cedric
    Rouquier, Raphael
    PACIFIC JOURNAL OF MATHEMATICS, 2013, 261 (01) : 45 - 51
  • [28] Kazhdan-Lusztig cells in some weighted Coxeter groups
    Jianyi Shi
    Gao Yang
    ScienceChina(Mathematics), 2018, 61 (02) : 325 - 352
  • [29] Kazhdan-Lusztig cells in some weighted Coxeter groups
    Jianyi Shi
    Gao Yang
    Science China Mathematics, 2018, 61 : 325 - 352
  • [30] ON THE KAZHDAN-LUSZTIG CELLS IN TYPE E8
    Geck, Meinolf
    Halls, Abbie
    MATHEMATICS OF COMPUTATION, 2015, 84 (296) : 3029 - 3049