Scale-Space Anisotropic Total Variation for Limited Angle Tomography

被引:32
|
作者
Huang, Yixing [1 ]
Taubmann, Oliver [1 ,2 ,3 ]
Huang, Xiaolin [1 ,4 ]
Haase, Viktor [1 ,3 ,5 ]
Lauritsch, Guenter [3 ]
Maier, Andreas [1 ,2 ]
机构
[1] Friedrich Alexander Univ Erlangen Nuremberg, Pattern Recognit Lab, D-91058 Erlangen, Germany
[2] Friedrich Alexander Univ Erlangen Nuremberg, Erlangen Grad Sch Adv Opt Technol, D-91052 Erlangen, Germany
[3] Siemens Healthcare GmbH, Computed Tomog, D-91301 Forchheim, Germany
[4] Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Recognit, Shanghai 200240, Peoples R China
[5] Univ Utah, Dept Radiol, Salt Lake City, UT 84108 USA
关键词
Anisotropic; limited angle tomography; scale-space; streak artifacts; total variation (TV);
D O I
10.1109/TRPMS.2018.2824400
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
This paper addresses streak reduction in limited angle tomography. Although the iterative reweighted total variation (wTV) algorithm reduces small streaks well, it is rather inept at eliminating large ones since total variation (TV) regularization is scale-dependent and may regard these streaks as homogeneous areas. Hence, the main purpose of this paper is to reduce streak artifacts at various scales. We propose the scale-space anisotropic TV (ssaTV) algorithm, which is derived from wTV, in two different implementations. The first implementation (ssaTV-1) utilizes an anisotropic gradient-like operator which uses 2 center dot s neighboring pixels along the streaks' normal direction at each scale s. The second implementation (ssaTV-2) makes use of anisotropic down-sampling and up-sampling operations, similarly oriented along the streaks' normal direction, to apply TV regularization at various scales. Experiments on numerical and clinical data demonstrate that both ssaTV algorithms reduce streak artifacts more effectively and efficiently than wTV, particularly when using multiple scales.
引用
收藏
页码:307 / 314
页数:8
相关论文
共 50 条
  • [41] THE SCALE-SPACE ASPECT GRAPH
    EGGERT, DW
    BOWYER, KW
    DYER, CR
    CHRISTENSEN, HI
    GOLDGOF, DB
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1993, 15 (11) : 1114 - 1130
  • [42] Scale-space hierarchy of singularities
    Sakai, T
    Imiya, A
    DEEP STRUCTURE, SINGULARITIES, AND COMPUTER VISION, 2005, 3753 : 181 - 192
  • [43] Dynamic scale-space theories
    Salden, AH
    Romeny, BMT
    Viergever, MA
    SCALE-SPACE THEORY IN COMPUTER VISION, 1997, 1252 : 248 - 259
  • [44] Scale-space analysis and corner detection on digital curves using a discrete scale-space kernel
    Ray, BK
    Ray, KS
    PATTERN RECOGNITION, 1997, 30 (09) : 1463 - 1474
  • [45] The Monogenic Scale-Space: A Unifying Approach to Phase-Based Image Processing in Scale-Space
    M. Felsberg
    G. Sommer
    Journal of Mathematical Imaging and Vision, 2004, 21 : 5 - 26
  • [46] The monogenic scale-space: A unifying approach to phase-based image processing in scale-space
    Felsberg, M
    Sommer, G
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2004, 21 (01) : 5 - 26
  • [47] Gaussian scale-space dense disparity estimation with anisotropic disparity-field diffusion
    Kim, J
    Sikora, T
    FIFTH INTERNATIONAL CONFERENCE ON 3-D DIGITAL IMAGING AND MODELING, PROCEEDINGS, 2005, : 556 - 563
  • [48] Image Scale-Space Filtering Using Directional Local Variance Controlled Anisotropic Diffusion
    Chen, Yong
    He, Taoshun
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2021, 2021
  • [49] Localization scale selection for scale-space segmentation
    Makrogiannis, S
    Bourbakis, N
    IMAGE ANALYSIS AND RECOGNITION, 2005, 3656 : 1 - 8
  • [50] Limited-angle hybrid optical diffraction tomography system with total-variation-minimization-based reconstruction
    Krauze, Wojciech
    Kus, Arkadiusz
    Kujawinska, Malgorzata
    OPTICAL ENGINEERING, 2015, 54 (05)