Scale-Space Anisotropic Total Variation for Limited Angle Tomography

被引:32
|
作者
Huang, Yixing [1 ]
Taubmann, Oliver [1 ,2 ,3 ]
Huang, Xiaolin [1 ,4 ]
Haase, Viktor [1 ,3 ,5 ]
Lauritsch, Guenter [3 ]
Maier, Andreas [1 ,2 ]
机构
[1] Friedrich Alexander Univ Erlangen Nuremberg, Pattern Recognit Lab, D-91058 Erlangen, Germany
[2] Friedrich Alexander Univ Erlangen Nuremberg, Erlangen Grad Sch Adv Opt Technol, D-91052 Erlangen, Germany
[3] Siemens Healthcare GmbH, Computed Tomog, D-91301 Forchheim, Germany
[4] Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Recognit, Shanghai 200240, Peoples R China
[5] Univ Utah, Dept Radiol, Salt Lake City, UT 84108 USA
关键词
Anisotropic; limited angle tomography; scale-space; streak artifacts; total variation (TV);
D O I
10.1109/TRPMS.2018.2824400
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
This paper addresses streak reduction in limited angle tomography. Although the iterative reweighted total variation (wTV) algorithm reduces small streaks well, it is rather inept at eliminating large ones since total variation (TV) regularization is scale-dependent and may regard these streaks as homogeneous areas. Hence, the main purpose of this paper is to reduce streak artifacts at various scales. We propose the scale-space anisotropic TV (ssaTV) algorithm, which is derived from wTV, in two different implementations. The first implementation (ssaTV-1) utilizes an anisotropic gradient-like operator which uses 2 center dot s neighboring pixels along the streaks' normal direction at each scale s. The second implementation (ssaTV-2) makes use of anisotropic down-sampling and up-sampling operations, similarly oriented along the streaks' normal direction, to apply TV regularization at various scales. Experiments on numerical and clinical data demonstrate that both ssaTV algorithms reduce streak artifacts more effectively and efficiently than wTV, particularly when using multiple scales.
引用
收藏
页码:307 / 314
页数:8
相关论文
共 50 条
  • [31] The monogenic curvature scale-space
    Zang, Di
    Sommer, Gerald
    COMBINATORIAL IMAGE ANALYSIS, PROCEEDINGS, 2006, 4040 : 320 - 332
  • [32] AFFINE INVARIANT SCALE-SPACE
    SAPIRO, G
    TANNENBAUM, A
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 1993, 11 (01) : 25 - 44
  • [33] Scale-space filters and their robustness
    Harvey, R
    Bangham, JA
    Bosson, A
    SCALE-SPACE THEORY IN COMPUTER VISION, 1997, 1252 : 341 - 344
  • [34] On the Axiomatization of Scale-Space Theory
    Anguelov, R.
    Fabris-Rotelli, I.
    APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES, 2012, 1487 : 159 - 167
  • [35] SCALE-SPACE FOR DISCRETE SIGNALS
    LINDEBERG, T
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1990, 12 (03) : 234 - 254
  • [36] Scale-space generators and functionals
    Nielsen, M
    GAUSSIAN SCALE-SPACE THEORY, 1997, 8 : 99 - 114
  • [37] Scale-Space Clustering on the Sphere
    Mochizuki, Yoshihiko
    Imiya, Atsushi
    Kawamoto, Kazuhiko
    Sakai, Tomoya
    Torii, Akihiko
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, PT I, 2013, 8047 : 417 - 424
  • [38] Applications of scale-space theory
    Romeny, BT
    GAUSSIAN SCALE-SPACE THEORY, 1997, 8 : 3 - 19
  • [39] Clustering by scale-space filtering
    Leung, Y
    Zhang, JS
    Xu, ZB
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2000, 22 (12) : 1396 - 1410
  • [40] Scale-Space SIFT Flow
    Qiu, Weichao
    Wang, Xinggang
    Bai, Xiang
    Yuille, Alan
    Tu, Zhuowen
    2014 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2014, : 1112 - 1119