Numerical Solution of Schrodinger Equation by Crank-Nicolson Method

被引:0
|
作者
Khan, Amin [1 ]
Ahsan, Muhammad [1 ]
Bonyah, Ebenezer [2 ]
Jan, Rashid [1 ]
Nisar, Muhammad [3 ,4 ]
Abdel-Aty, Abdel-Haleem [5 ,6 ]
Yahia, Ibrahim S. [7 ,8 ,9 ]
机构
[1] King Khalid Univ, Dept Phys, Fac Sci, POB 9004, Abha, U Arab Emirates
[2] Akenten Appiah Menka Univ Skills Traning & Enterp, Dept Math Educ, Kumasi, Ghana
[3] Macquaire Univ Sydney, Dept Math Statiscs, Sydney, NSW 2109, Australia
[4] FATA Univ Bisha, Dept Math, Darra Adam Khel 26100, Pakistan
[5] Univ Bisha, Dept Phys, Coll Sci, POB 344, Bisha 61922, Saudi Arabia
[6] Al Azhar Univ, Phys Dept, Fac Sci, Assiut 71524, Egypt
[7] King Khalid Univ, Dept Phys, Lab Nano Smart Mat Sci & Technol LNSMST, Fac Sci, POB 9004, Abha 61413, Saudi Arabia
[8] King Khalid Univ, Res Ctr Adv Mat Sci RCAMS, POB 9004, Abha 61413, Saudi Arabia
[9] Ain Shams Univ, Dept Phys, Semicond Lab, Nanosci Lab Environm & Biomed Applicat NLEBA, Cairo 11757, Egypt
关键词
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, we implemented the well-known Crank-Nicolson scheme for the numerical solution of Schrodinger equation. The numerical results converge to the exact solution because the Crank-Nicolson scheme is unconditionally stable and accurate. We have compared the results for different parameters with analytical solution, and it is found that the Crank-Nicolson scheme is suitable for the numerical solution of Schrodinger equations. Three different problems are included to verify the accuracy, stability, and capability of the Crank-Nicolson scheme.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Crank-Nicolson/finite element approximation for the Schrodinger equation in the de Sitter spacetime
    Selvitopi, Harun
    Zaky, Mahmoud A.
    Hendy, Ahmed S.
    PHYSICA SCRIPTA, 2021, 96 (12)
  • [22] Qualitative Analysis of the Crank-Nicolson Method for the Heat Conduction Equation
    Farago, Istvan
    NUMERICAL ANALYSIS AND ITS APPLICATIONS: 4TH INTERNATIONAL CONFERENCE, NAA 2008, 2009, 5434 : 44 - 55
  • [23] Superconvergence analysis of Crank-Nicolson Galerkin FEMs for a generalized nonlinear Schrodinger equation
    Zhang, Houchao
    Wang, Junjun
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (02) : 799 - 820
  • [24] A POSTERIORI ERROR ANALYSIS FOR THE CRANK-NICOLSON METHOD FOR LINEAR SCHRODINGER EQUATIONS
    Kyza, Irene
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2011, 45 (04): : 761 - 778
  • [25] APPLICATION OF CRANK-NICOLSON METHOD TO A RANDOM COMPONENT HEAT EQUATION
    Anac, Halil
    Merdan, Mehmet
    Kesemen, Tulay
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2020, 38 (01): : 475 - 480
  • [26] Local Crank-Nicolson Method for Solving the Nonlinear Diffusion Equation
    Abduwali, Abdurishit
    Kohno, Toshiyuki
    Niki, Hiroshi
    INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2008, 11 (02): : 165 - 169
  • [27] NUMERICAL ANALYSIS OF CRANK-NICOLSON SCHEME FOR THE ALLEN-CAHN EQUATION
    Chu, Qianqian
    Jin, Guanghui
    Shen, Jihong
    Jin, Yuanfeng
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2021, 39 (05): : 766 - 776
  • [28] Two-Grid Crank-Nicolson FiniteVolume Element Method for the Time-Dependent Schrodinger Equation
    Chen, Chuanjun
    Lou, Yuzhi
    Zhang, Tong
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2022, 14 (06) : 1357 - 1380
  • [29] ALTERNATING BAND CRANK-NICOLSON METHOD FOR
    陈劲
    张宝琳
    AppliedMathematics:AJournalofChineseUniversities, 1993, (02) : 150 - 162
  • [30] Numerical Solution of Gardner Equation via Differential Quadrature Method with Crank-Nicolson and SSP-RK43 Schemes
    Ishwarya, A. Susan
    Bhatia, Rachna
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2025, 32 (01)