共 50 条
Numerical Solution of Schrodinger Equation by Crank-Nicolson Method
被引:0
|作者:
Khan, Amin
[1
]
Ahsan, Muhammad
[1
]
Bonyah, Ebenezer
[2
]
Jan, Rashid
[1
]
Nisar, Muhammad
[3
,4
]
Abdel-Aty, Abdel-Haleem
[5
,6
]
Yahia, Ibrahim S.
[7
,8
,9
]
机构:
[1] King Khalid Univ, Dept Phys, Fac Sci, POB 9004, Abha, U Arab Emirates
[2] Akenten Appiah Menka Univ Skills Traning & Enterp, Dept Math Educ, Kumasi, Ghana
[3] Macquaire Univ Sydney, Dept Math Statiscs, Sydney, NSW 2109, Australia
[4] FATA Univ Bisha, Dept Math, Darra Adam Khel 26100, Pakistan
[5] Univ Bisha, Dept Phys, Coll Sci, POB 344, Bisha 61922, Saudi Arabia
[6] Al Azhar Univ, Phys Dept, Fac Sci, Assiut 71524, Egypt
[7] King Khalid Univ, Dept Phys, Lab Nano Smart Mat Sci & Technol LNSMST, Fac Sci, POB 9004, Abha 61413, Saudi Arabia
[8] King Khalid Univ, Res Ctr Adv Mat Sci RCAMS, POB 9004, Abha 61413, Saudi Arabia
[9] Ain Shams Univ, Dept Phys, Semicond Lab, Nanosci Lab Environm & Biomed Applicat NLEBA, Cairo 11757, Egypt
关键词:
D O I:
暂无
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
In this study, we implemented the well-known Crank-Nicolson scheme for the numerical solution of Schrodinger equation. The numerical results converge to the exact solution because the Crank-Nicolson scheme is unconditionally stable and accurate. We have compared the results for different parameters with analytical solution, and it is found that the Crank-Nicolson scheme is suitable for the numerical solution of Schrodinger equations. Three different problems are included to verify the accuracy, stability, and capability of the Crank-Nicolson scheme.
引用
收藏
页数:11
相关论文