Reversible Monadic Computing

被引:7
|
作者
Heunen, Chris [1 ]
Karvonen, Martti [2 ]
机构
[1] Univ Oxford, Dept Comp Sci, Oxford OX1 2JD, England
[2] Aalto Univ, Dept Math & Syst Anal, Espoo, Finland
基金
英国工程与自然科学研究理事会;
关键词
Frobenius monad; dagger category; reversible computing; quantum measurement;
D O I
10.1016/j.entcs.2015.12.014
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We extend categorical semantics of monadic programming to reversible computing, by considering monoidal closed dagger categories: the dagger gives reversibility, whereas closure gives higher-order expressivity. We demonstrate that Frobenius monads model the appropriate notion of coherence between the dagger and closure by reinforcing Cayley's theorem; by proving that effectful computations (Kleisli morphisms) are reversible precisely when the monad is Frobenius; by characterizing the largest reversible subcategory of Eilenberg-Moore algebras; and by identifying the latter algebras as measurements in our leading example of quantum computing. Strong Frobenius monads are characterized internally by Frobenius monoids.
引用
收藏
页码:217 / 237
页数:21
相关论文
共 50 条
  • [31] The Design of Reversible Gate and Reversible Sequential Circuit based on DNA Computing
    Song, Tao
    Wang, Shudong
    Wang, Xun
    2008 3RD INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEM AND KNOWLEDGE ENGINEERING, VOLS 1 AND 2, 2008, : 114 - +
  • [32] Monadic Distributive Lattices and Monadic Augmented Kripke Frames
    Figallo, A. V.
    Pascual, I.
    Ziliani, A.
    JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2014, 22 (1-2) : 189 - 216
  • [33] The lattices of monadic filters in monadic BL-algebras
    Wang, Juntao
    Wang, Mei
    IAENG International Journal of Applied Mathematics, 2020, 50 (03): : 656 - 660
  • [34] ON MONADIC NP VS MONADIC CO-NP
    FAGIN, R
    STOCKMEYER, LJ
    VARDI, MY
    INFORMATION AND COMPUTATION, 1995, 120 (01) : 78 - 92
  • [35] Monadic panpsychism
    Nino Kadić
    Synthese, 203
  • [36] Monadic Decomposition
    Veanes, Margus
    Bjorner, Nikolaj
    Nachmanson, Lev
    Bereg, Sergey
    COMPUTER AIDED VERIFICATION, CAV 2014, 2014, 8559 : 628 - 645
  • [37] Monadic regions
    Fluet, Matthew
    Morrisett, Greg
    JOURNAL OF FUNCTIONAL PROGRAMMING, 2006, 16 : 485 - 545
  • [38] Monadic robotics
    Peterson, J
    Hager, G
    USENIX ASSOCIATION PROCEEDINGS OF THE 2ND CONFERENCE ON DOMAIN-SPECIFIC LANGUAGES (DSL'99), 1999, : 95 - 108
  • [39] Monadic Decomposition
    Veanes, Margus
    Bjorner, Nikolaj
    Nachmanson, Lev
    Bereg, Sergey
    JOURNAL OF THE ACM, 2017, 64 (02)
  • [40] Monadic panpsychism
    Kadic, Nino
    SYNTHESE, 2024, 203 (02)